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Abstract

Most current object-oriented systems are constructed specifically to support a
particular view of objects, and their implementation. This thesis describes two
aspects of object-oriented systems, and discusses how these can be supported using
general-purpose constructs, rather than special-purpose primitives.

First the implementation of objects, constructed simply or using inheritance, is
described using first-class functions in strongly-typed languages. It is seen that the
type system is crucial in determining the techniques that can be used, and a less
flexible type system can make objects very inefficient. However a sufficiently
powerful type system does allow objects of comparable efficiency to those which
might be provided as primitives by a system.

A new approach to subtype relationships is presented for use in systems that
do not directly support subtypes, and for those that do, a new subtype relationship
between existentially quantified types is presented. Both of these are important in
the construction of objects, and they can be used together in the implementation of
multiple inheritance.

The second part explores techniques to allow an object to have some control
over the events that occur when it is no longer needed by the system. A direct
implementation is described, but then again it is seen that an implementation by the
composition of lower-level primitives is preferable, and in fact in this case is also
easier.
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Introduction

This thesis discusses some techniques for the construction of object-oriented
systems. In this context an ‘‘object-oriented system’’ is ‘‘a system that supports the
construction and execution of objects’’. This could range from the run-time
environment for an object-oriented programming language, to an object-oriented
operating system — although the emphasis is at the smaller-scale end of this
spectrum. The use of the word ‘‘system’’ is intended to imply that, to a large
extent, language-independent, and ‘‘system-level’’ concerns are of interest.

Object-oriented design and implementation techniques are a popular approach
to addressing problems which are manifest in the so-called ‘‘software crisis’’, caused
by the ever-increasing scope and complexity of software systems. The approach is
less revolutionary than those of, say functional, or declarative programming, being
imperative in nature. However the traditional separation of program and data is
replaced by a close relationship between data, and the operations that manipulate it.
This change of emphasis from code to data is fundamental to the object-oriented
approach.

The intention is that the structure of a software system should reflect the
structure of the problem that is being solved, and object-oriented techniques, which
were originally proposed for simulations, provide a way of achieving this. This
approach makes it easier to separate abstract behaviours from each other, which
encourages the collection of such behaviours into program libraries, promoting the
re-use of existing code.

Object-oriented systems usually provide inheritance, or an equivalent
mechanism, for the incremental construction of the behaviours of objects. This is
particularly important since it allows general-purpose behaviours, found in a library,
say, to be specialized to the task at hand — a problem not adequately addressed by
other systems, which do not help the programmer to resolve the problems of re-
using complex routines, which are seldom exactly what is required, leading to the
limited re-use of programs.

Most existing object-oriented systems have been designed specifically to
execute programs written using object-oriented techniques. The theme of this thesis
is that explicit support is not needed, if sufficiently powerful primitives are available,
and the system allows these to be composed in the correct ways.

The first part of the thesis describes techniques for the support of objects in
strongly-typed systems, and shows how more expressive type systems allow us to
capture progressively more of the essence of what objects really are, and so
implement them more efficiently. This means that explicit support for objects is not
needed for them to be implemented safely and efficiently, which is useful if one
wishes to provide objects in an existing system. It is also a useful technique in new
systems, since it requires fewer primitives to be implemented, and verified to be
‘‘safe’’ and ‘‘correct’’.
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A further advantage of constructing objects is that it makes the system less
specialized towards any particular model of objects, or of their implementation.
This is particularly important if the system is intended to support a range of object-
oriented languages — especially since there is little agreement on exactly what an
object-oriented system is, and how some features, such as multiple inheritance,
should be defined.

Chapter 2 discusses the provision of objects in statically strongly-typed
systems that provide First-class, or Higher-order, function values, such as Standard
ML. The technique of type-coercion is introduced to allow subtype relationships,
and hence objects, to be defined.

Chapter 3 discusses how the relaxation of the type system to directly allow
subtype relationships between values, aids in the construction of objects. However it
is not until existential quantification of types is allowed by the type system (in
chapter 4) that objects can be defined with similar run-time, and space, complexities
to those seen in systems providing primitive support for objects.

Chapters 5 and 6, look at a different aspect of object-oriented systems — the
‘‘active deallocation of objects’’. This is when an object is given an opportunity to
take some action when it becomes unreferenced by, and hence of no further use to,
the rest of the system. Chapter 5 discusses how an object-oriented system might
provide destroy methods, which are routines in objects that are invoked by the
memory system to prepare the object for its deallocation. Chapter 6 then shows
how a similar effect can be achieved using primitives which are also of more
general use. Surprisingly this leads to a simpler overall mechanism for active
deallocation, continuing the theme of the first part, that appropriate primitives are
desirable in preference to direct system support.
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Chapter 1

Object-Oriented Systems

1 . 1  What Does ‘‘Object-Oriented’’ Mean?

A good way of thinking of an object-oriented system is of a space which
contains many independent objects. Each object provides a behaviour which is a set
of operations that the object can be requested to carry out. It does this by internal
computation and by requesting other objects, which it can name, to carry out
operations in turn.

Each object contains some state, and so the decomposition of a problem into a
collection of objects must reflect the relationships between parts of the state of the
system. This means that ‘‘object-oriented’’ inherently implies a ‘‘data-oriented’’
view of the system.

An alternative is to view each object as presenting a resource to the rest of the
system. Usually this resource is simply the state in the object, but objects can also
represent real devices, or resources outside the system. The object’s operations are
provided to allow the rest of the system to use the resource, but limit access so that
it can only be manipulated in ways that the object chooses to allow.

Nothing has been said of the relative sizes of the objects that make up a
system, and this is the essential difference between many object-oriented systems.
In an object-oriented programming language, such as Smalltalk-80 or C++, objects
take the place of data structures in traditional languages, and can be very small. In
Smalltalk-80 everything is an object, even the integers. More commonly, objects
take the traditional role of structures (or records), and so often use a few words of
memory. In contrast object-oriented operating systems, such as Eden, use objects at
a much coarser grain. Here objects provide the behaviour of files, processes,
devices, and other services that are in the system. Despite this disparity in scale,
these systems have many things in common, and this is what makes them ‘‘object-
oriented’’.

There have been many attempts to define the properties that make a system
‘‘object-oriented’’,1, 2, 3 but apart from a consensus that the system should contain
‘‘objects’’, there is little agreement on an exact meaning. This means that it is best
simply to define what the phrase is intended to convey in this thesis — no
guarantees are made that this is the same as definitions elsewhere, but it most
resembles that presented by Blair et. al.4

An ‘‘object-oriented system’’ is one that contains objects with the following
properties:

1 Encapsulation — an object’s state is only accessible using its nominated
operations.
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2 Dynamic lifetimes — objects can be created as the system executes.

3 Identity — each object has a name, which can be used to refer to it.

4 Substitution — objects that provide compatible operations can be used
interchangeably.

The encapsulation provided by objects is just what is normally meant by
saying that an object is an instance of an abstract data-type.5 This does not
necessarily mean that an object cannot make its internal state visible from outside,
but rather that this is a choice which was made by the designer of the object, which
the rest of the system cannot circumvent. This means that the possible interactions
of the object with the rest of the system are limited to those which the designer
decides to allow, making it possible for objects to be designed and implemented
independently of each other, and the rest of the system, to a greater extent than is
possible with traditional techniques.

Most modern programming languages provide some support for abstract data-
types — examples are packages in Ada,6 and modules in Modula-2.7 However these
are instantiated (or in Ada, elaborated) statically, at compile time.† An object-
oriented system is more dynamic, and objects have dynamic lifetimes. One of the
actions that an object can carry out as part of its behaviour is to create another
object. Conversely as the system executes objects become unnecessary, and the
resources associated with them can be reclaimed by the system. This might occur
by the explicit action of the programmer, or automatically using some form of
garbage-collection.8 Since the reclamation of objects’ resources is purely a
performance issue this is not explicit in the definition given above, howev er real
systems must address this in some way, and this leads to the topic of active
deallocation, which is discussed in chapters 5 and 6.

One of the possible actions of an object is to request some action by another
object. This means that it must be possible for an object to contain references to
other objects, that is, in some way to name other objects. Some constancy is
implied in this naming. Subsequent uses of a name are expected to refer the same
object, at least in some abstract sense.

Finally, and most importantly, it should be possible to substitute one object for
another in contexts where the substituted object can provide the necessary
operations. The substituted object might also allow additional operations, but so
long as it provides all the operations that are needed in the context in which it is
used, the system will continue to function. Of course the system might actually do
something quite different from what it would have done without the substitution,
since the substituted object might have a completely different effect, but the
substitution is allowed. Careful use of this property is how much of the power of
object-oriented systems is gained.

Allowing substitutions seems strange at first, but is actually quite familiar in
the guise of the Unix file system,9 which provides several operations on open files,
such as read, write, and close. Howev er we know that a file descriptor for a

† Although run-time initialization is allowed.
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terminal, or some other device, can be substituted for a file descriptor for a file, and
these operations will continue to work. However the routines executed, and the
resulting effects will be those appropriate to the actual object being used.

The substitution property introduces a form of polymorphism10 into object-
oriented systems, allowing parts of the system to work successfully on a range of
different kinds of object. It is also the property that introduces almost all the
implementation difficulties associated with object-oriented systems.

1 . 2  Terminology for Object-Oriented Systems

Like any other development, object-oriented techniques have introduced their
own terminologies, some of which will be used here. The introduction of
terminology specifically related to inheritance and delegation will be postponed until
these concepts are described in the next section.

Behaviour

Objects will often be said to display behaviour. This is simply the
combination of operations with some hidden state, which different operations on an
object can use to communicate. Thus consecutive inv ocations of an operation might
return different results, depending on other operations that have occurred on the
object.

Message

The request to an object to carry out some operation is usually called a
message to the object. This may, or may not, imply an underlying communication,
depending on the type of system that is involved. However some transfer of data is
normally involved even if this is just in the form of parameters included in the
request.

Following this, the request is often referred to as the sending of a message to
the object, and the object is said to receive the message. This is roughly equivalent
to calling a function in traditional systems, since the flow of control goes with the
message from the sending, to the receiving object. When the request has been acted
on by the object, a reply is returned to the sender of the message, and it can
continue to execute.

Actor languages have a different model of message passing, which will be
discussed briefly later.

Method

The code describing the actions to occur when an object is sent a message is
called a method, or less often, a script. In C++ it is called a member function, but
method will be used uniformly here to avoid a proliferation of equivalent
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terminology. An object is said to understand a message, if it has a method
corresponding to that message. Some systems can check that all the messages will
be understood statically, at compile-time, while other systems postpone this check
until runtime, so that the reception of a message that is not understood becomes a
run-time error.

Receiver, Self

The difference between a method and a traditional function (or procedure) is
that a method executes ‘‘in the context of’’ a particular object, that is the object to
which the message that requested its execution was sent. This object is called the
receiver of the message, and the method has access to its concrete representation.
Most languages allow this object to be referred to in the method as ‘‘self’’, or in
C++ ‘‘this’’.

Class, Instance

Many objects in a system will differ only in their names and current state, but
use the same methods. This means that it is often useful to collect together all the
common methods, so that they can be referred to collectively. Such a collection of
methods is called a class, since it defines the behaviour for a class of objects. The
objects are then said to be instances of the class which contains their methods.

Other information that can be shared by all the instances of a class will also
be stored in the class. In particular the class usually contains a description of the
construction of the object, and provides operations that use this information to
construct new instances.

In some systems, such as Smalltalk-80, classes are themselves objects, and the
system is self-describing at this level.

Instance variable

The state contained in an object usually consists of a collection of named
variables — in this way an object is very much like a traditional structure. These
are called instance variables. In LISP-based object oriented systems they are also
known as slots, but these can also (at least in concept) contain the methods
associated with the object.

1 . 3  Inheritance and Delegation

The substitution property of object oriented systems makes it very common for
many objects in the system to have similar behaviours, so that they can be used
interchangeably. Thus it is important for systems to provide some support for the
construction of similar behaviours. Most systems that organise behaviour in classes
use inheritance for this, delegation is commonly used in systems that do not use
classes.
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1 . 3 . 1  Inheritance

When a class is defined it can, and in some systems must, inherit the
behaviour of another class. This means that all the methods in the inherited class,
known as its superclass, are implicitly provided in the inheriting class, or subclass.
Consequently any message understood by instances of the superclass will also be
understood by instances of the subclass. It also means that any state described by
the superclass will be present in instances of the subclass.

This is sufficient, but not necessary, to guarantee that an instance of the
subclass can be substituted for instances of the superclass, and we shall see later
that this forms the basis of the type system in many object-oriented languages.

Of course, if we are defining a new class, then we do not want only to inherit
the behaviour of a superclass, but also wish to add behaviour, or modify the
inherited behaviour in some way. Inheritance mechanisms provide for this by
allowing the inheriting class to introduce new behaviour that is added to that
obtained from the superclass. They also allow the subclass to override inherited
methods, so that new definitions for inherited methods can be provided. Thus
messages associated with the old behaviour can cause parts of the new behaviour to
be used instead.

It is usually expected that the overriding behaviour will be, in some sense, an
extension of the inherited behaviour, and it is common for overriding methods to
invoke the methods that they override as part of their actions. This means that it
should be possible for a method to use inherited behaviour that is overridden in its
class — this is often called sending a message to super, the phrase coming from the
Smalltalk notation for this action.

However the most subtle way in which behaviour can be extended is by
sending messages to self. It is common for the evaluation of a method to make use
of the actions of other methods defined for the same object. At its simplest this is
the same as calling a local function in conventional languages. However inheritance
opens up a new possibility in this situation, which is that a method might cause the
invocation of a method defined in a subclass of the class in which it is itself
defined. This method will usually have overridden an inherited version that would
otherwise have been invoked.

This means that a method’s effect can be modified by overriding the
definitions of other methods that it uses, allowing parameterization of behaviours. It
also means that the interface specification of a class cannot simply consist of the
behaviour that it makes available in instances, but must also include the behaviour
that it uses by sending messages to self, which might be altered in inheriting
classes. The specification of the semantics of a class must provide a way for
inherited behaviour to be altered by the inheritance process — this has been
described by Cook.11

This parameterization of behaviour can be used in a way that is similar to that
provided by higher-order functions in functional languages, but is generally
notationally less convenient.
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Together these possibilities make inheritance a very powerful way of
composing existing, and new, behaviours to construct the desired behaviour. This is
the foundation which encourages a high degree of code re-use in object-oriented
systems. However it can also make the design process more difficult, since the
designer of a class should now consider not just the behaviour that is required for
the task at hand, but also the interfaces that should be made available to allow this
behaviour to be re-used by inheritance.

It is often useful to distinguish two different kinds of classes:

• Normal classes — which describe the behaviour of objects in the system, and

• Abstract classes — which describe common behaviour to be inherited by other
classes, which is not in some sense ‘‘complete’’. Such classes are not expected to
be instantiated directly.

Some object-oriented languages such as Trellis/Owl,12, 13 Eiffel14 and C++
provide mechanisms allowing the programmer to assert that a class is abstract, and
the system does not allow instances of these classes to be created. Other languages,
such as Smalltalk-80, document abstract classes as a programming technique, but do
not provide explicit support for them.

To sum up, there are fiv e important properties expected of inheritance
mechanisms:

1 Inherit behaviour — previously defined behaviour can be used as part of the
definition of new behaviour.

2 Additional behaviour — new behaviour can be added to that which was
inherited.

3 Overriding operations — inherited operations can be replaced by new
behaviour.

4 Access to overridden behaviour — new behaviour should be able to make use
of inherited behaviour that it, or some other new behaviour, hides by
overriding.

5 Access to overriding behaviour — inherited behaviour should be able to use
overriding behaviour defined when it is inherited.

1 . 3 . 2  Multiple Inheritance

The discussion above assumes that a class is built by extending the behaviour
of one other class. In practice there are many situations where the behaviour that is
desired is the synthesis of the behaviours of several other classes. The restriction
that a class can only have one superclass is inconvenient, and can force an unnatural
structure on the classes.
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The ability to inherit the behaviours of more than one class is called multiple
inheritance and has been offered by several object-oriented systems, including most
of the LISP-based systems, the traits system used for the software in the Xerox Star
office system,15 and more recently in Trellis/Owl, Eiffel, and C++.

In most situations where multiple inheritance is useful there are ways in which
the inheritance relationships between classes could be changed to remove the need
for multiple inheritance. However these changes make the classes less general, and
so less likely to be useful elsewhere, making multiple inheritance particularly
important for improving the possibility of code re-use. With multiple inheritance it
is possible to construct classes describing relatively small behaviours, which are then
combined in a ‘‘mix and match’’ style, which is not possible with single inheritance.

With single inheritance there are no possibilities of conflicts, where the
inheriting class is inconsistent because of the behaviour it inherits — local
definitions of methods clearly override those that are inherited. However with
multiple inheritance the possibility exists that several superclasses might provide
methods for the same message, without any ‘‘clearly correct’’ way to decide
between them, giving a conflict.

Similar conflicts arise with inherited instance variables, but here overriding is
not useful, rather the question is whether two instance variables with the same name
and type, inherited from different classes, should be the same instance variable in
the object, or whether there should be two instance variables in the object, and a
syntax to allow them to be accessed individually.

Different systems have chosen to resolve ambiguities in different ways, which
can lead to profound differences in the ways in which inheritance is used in these
systems. For example some approaches encourage the mix and match approach,
while others encourage approaches more like those used with single inheritance.

Tw o example inheritance graphs will be used to demonstrate the resolution of
conflicts:

B
m

C
m

D
?

Figure 1.1: Conflicting Inheritance of a Message
This shows class D inheriting behaviour for the message m, from both of its
superclasses, B and C. If there is also a definition for m in class D, overriding both
inherited methods, then there is no conflict, but without this we need a way to
decide which of the inherited methods is invoked when the message m is sent to an
instance of class D.
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B C

A
m

D

Figure 1.2: Conflicting Inheritance of a Class
In this case the entire behaviour of the class A is inherited twice by class D, and so
ev ery message that is understood by instances of A will be in conflict in the
definition of class D, unless it is overridden.

There are three main ways to resolve inheritance ambiguities, Snyder16 called
these: linear, graph-oriented, and tree resolutions of ambiguity.

Linear resolution
In the linear resolution of conflicts the system attempts to find a linear ordering for
the inheritance of the superclasses, which preserves as many of the relationships
between the classes as possible, and then (in effect) uses single inheritance to
construct a class hierarchy with no conflicts.

Given the example class definitions the system would construct the following
inheritance hierarchies:
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C
m

B
m

D

Message conflict

A
m

C

B

D

Class conflict

Figure 1.3: Linear Conflict Resolution
This approximates a breath-first search of the inheritance hierarchy. The problem
with this is that it can only be an approximation, since it introduces inheritance
relationships between classes which were not in the original inheritance graph, here
between classes B and C. This might interfere with attempts by B to communicate
with its superclasses.

The advantage of linear resolution is that any inheritance pattern can be
accepted by the system, which is claimed to be useful for the rapid prototyping of
systems. This technique is used by the object-oriented extensions to LISP,
Symbolics’ Flavors,17 Common LOOPS,18 and CLOS.19

Graph resolution

In graph resolution of inheritance conflicts, the general philosophy is that a
conflict is a programmer error, like a type error, and so rather than attempting to
resolve the conflict the system should refuse to accept classes that introduce
conflicts. However there are some special conflicts that the system will resolve
automatically. In particular if the same behaviour is inherited more than once, it is
not regarded as a conflict, and the resulting class implements the behaviour once —
in the sense that instances of the class will only contain one set of instance
variables for the behaviour, reg ardless of how often it is inherited. This means that
classes that are inherited might communicate via common ancestor classes, and it
reflects the view of objects as modelling real-world behaviour — a real-world object
can only have a behaviour once!
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Tr ee resolution

Snyder suggested tree-based resolution of inheritance to avoid problems with
the other solutions: the multiple inheritance of a method is an error unless it is
explicitly overridden in the inheriting class. But in contrast to graph resolution,
inherited state is always distinct.

This means that both the examples given above are illegal without overriding,
and that the conflicting class example is treated as if it were of the form:

A
m

A
m

B C

D
m

Figure 1.4: Tree-based Multiple Inheritance of a Class
as far as storage is concerned, when the overriding method is added to class D.

The advantages of this are:

• No unexpected sharing can occur between classes because of their choice of
instance variable names, or their choice of which classes to inherit. This means that
knowledge of the classes that were inherited no longer need to be part of the
specification of a class. With graph resolution this was needed so that
communication via common ancestor classes could be predicted by the writer of an
inheriting class.

• All inherited methods can see their instance variables in the same relative
positions. This allows more efficient code sharing between classes than would
otherwise be possible.

Tree resolution was first used in Snyder’s CommonObjects extension to LISP.
This was designed with particular emphasis on the encapsulation of objects and
classes, the intention being that classes did not have to include any information
about their construction in their externally visible specification. Version 2 of C++
also uses tree resolution for most classes, but acknowledges that graph resolution is
sometimes useful, by allowing classes to explicitly declare which of their
superclasses can be shared when they are inherited.

1 . 3 . 3  Delegation

An alternative to inheritance, which has been used particularly in Actor
languages is delegation.20 The idea is that an object, when it is asked to carry out
some action for which it does not have a method, simply forwards the request to
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another object, called the delegate. This means that the behaviour of the delegate is
visible through those objects which delegate to it. Delegation introduces more
possibilities for the sharing of behaviour than are possible with inheritance, since
several objects may all delegate messages to a single object, making changes to its
state visible through them all. An object can also delegate different messages to
different objects, which is the delegation equivalent of multiple inheritance.

There has been much discussion about the exact relationship between
inheritance and delegation, in particular see Lieberman20 and Stein,21 but a
fundamental difference is in the value of self as seen by a method reached by
delegation. Here self refers to the delegate, rather than referring to the object to
which the original request was made, making inheritance property 5 (access to
overriding behaviour) very difficult to achieve.

If delegation is allowed to use a slightly different mechanism from normal
message sends this problem can be avoided, which is the approach used in Ungar
and Smith’s language self.22

The efficient implementation of delegation is difficult, particularly in systems
where messages are relatively expensive, simply because it increases the frequency
of message sends.

1 . 4  Some Object-Oriented systems

This section gives a brief survey of some of the more important object-
oriented systems that have been developed. The survey is by no means exhaustive
— there now being many dozens of systems that are claimed to be ‘‘object-
oriented’’. However the systems mentioned have either been particularly influential,
or are typical of a particular approach to ‘‘object-orientedness’’.

Simula-67

Object-oriented programming was first supported by Simula-67,23 an extension
of Algol-60 specifically intended for the programming of simulations. Simula-67
introduced the Class construct, which was intended to reflect program organisation
techniques that Kristen Nygaard first used in simulations for the Norwegian Nuclear
power program.24 The idea being that the program structure should parallel that of
the system which is being modelled. The class allowed objects to be defined to
model each real-world object on a one-to-one basis.

Simula-67 is most important for its influences on other languages. It
introduced most of the concepts central to object-oriented programming, but was
never very widely used — perhaps because the system support required by other
language features (particularly co-routines) was perceived as being too expensive for
a general-purpose language.

A class could be defined with another as its prefix, which is the Simula
mechanism for the inheritance of implementations. The term ‘‘prefix’’ reflects the
underlying implementation, where each object contains an instance of its prefix class
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as its first part. This is the most efficient implementation strategy for object-
oriented languages, and is described in detail later.

Being based on Algol-60, Simula-67 is a statically strongly-typed language.
The types of objects are defined by their classes, each class being implicitly a
subtype of all its prefix classes — this approach has formed the basis of the type
systems for most of the current strongly-typed object oriented languages, such as
C++, and Eiffel.

The one weak area in Simula’s support for object-oriented programming is that
it did not support the encapsulation of objects in that, while operations can be
attached to objects, there was no way to restrict the access that was allowed to an
object’s state from outside. A directive similar to C++’s private has been added
more recently to provide control of the visibility of object’s state.

Kristen Nygaard is now inv olved in the design of a successor to Simula, called
26Beta.25, This language provides a general abstraction mechanism, called a
pattern, which can provide the effect of a class, but is more general. For example,
functions and co-routines are also described by patterns in Beta.

C++

C++27 is an extension of C28 which was (and continues to be) developed by
Bjarne Stroustrup of AT&T Bell Laboratories, at Murray Hill. C++ was directly
influenced by Simula-67, and development started when Stroustrup added classes to
C using a pre-processor,29 to help him to program some simulations.

Although highly compatible with C, C++ is a language in its own right, and in
addition to classes, adds operator overloading, stricter type checking, in-line
functions, a less strict declaration syntax, and user-controlled storage management.
At the same time many strengths of C are kept, including the possibility of simple
efficient implementations, and low-level access to the machine. Version 2 of C++
(due out in the Summer of 1989) adds multiple inheritance, and some other less
important facilities, to the previously distributed version.

Being based on C, and having a similar efficiency, C++ has found a
widespread acceptance that has not been enjoyed by other object-oriented systems,
and many sites are increasingly using it in preference to C. Objects are
implemented in the same way as in Simula, and this is extended to multiple
inheritance using techniques that were first proposed for Simula by Krogdahl.30, 31

Smalltalk

The Smalltalk systems developed in the Learning Research Group † at the
Xerox Palo Alto Research Center have been most influential in developing the field
of object-oriented systems.

† Which later became the ‘‘Software Concepts Group’’, or SCG.
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Smalltalk was intended to be the software component of the Dynabook, a
powerful, portable, personal computer, which turned out to be far more ahead of its
time than was perhaps appreciated. Indeed technologies such as compact high
resolution, touch sensitive displays, and batteries that can provide the power for a
powerful system with sufficient memory, are only now beginning to become
available. It will probably still be several years before the cost becomes low enough
for a Dynabook to be feasible.

Fortunately Smalltalk developed independently of the Dynabook hardware:32

The very first Smalltalk evaluator was a thousand-line BASIC program
which first evaluated 3+4 in October 1972. It was followed in two
months by a Nova assembly code implementation which became known
as the Smalltalk-72 system.

Several iterations from this initial design culminated in the Smalltalk-80 system,33

that was distributed outside Xerox PARC, and is the version of Smalltalk that many
people now hav e access to.

Smalltalk was conceived from the start as a complete system, rather than
simply a language, and took many ideas from LISP systems which were also
developing in this way. In particular Smalltalk presents a very dynamic environment
and encourages the incremental development of programs. This led to run-time
type-checking, and a powerful, but potentially expensive mechanism for message
dispatch, which were some of the causes of the slow acceptance of Smalltalk-80
outside research centres. It is only quite recently that personal computer systems
have become generally available which are powerful enough to support Smalltalk,
and more sophisticated techniques for the fast execution of Smalltalk have been
developed.34, 35

The integrated environment provided by Smalltalk-80 is simultaneously both its
strongest and its weakest feature, since it provides a highly productive environment
for programming, but also restricts Smalltalk applications to situations that can
support the whole environment. In particular it is difficult for Smalltalk tools to be
written that interact conveniently with other tools as is common, say in Unix, and it
is difficult for companies to distribute Smalltalk programs, independently of a
particular Smalltalk system.

LISP-based systems

Many object-oriented systems have been implemented in LISP. There are
several reasons for this:

• LISP provides much of the low-level support that is required, and allows the
user to construct his own higher-level constructs upon those that already exist.
Furthermore this can be done in such a way that the additional constructs are no
less convenient to use than those in the original system. This means that LISP is an
ideal system for investigating things like object-oriented ideas, and many of these
prototypes developed into practical tools that people used.
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• LISP does not provide an abstraction mechanism at an intermediate granularity
between the function, and the package (where these are provided). Classes and
objects fitted nicely into this gap.

• Many influential people at Xerox PARC worked on both Smalltalk and
InterLISP-D, leading to much cross-fertilization of ideas.

The dominant object-oriented extensions to LISP were Symbolics’ Flavors17

and LOOPS36 (the LISP Object-Oriented Programming System) for InterLISP-D
developed at Xerox PARC.37 LOOPS developed into Common LOOPS18 based on
Common LISP.38 Recently there has been a standardization effort directed at object-
oriented extensions to Common LISP as part of its standardization. The result of
this is CLOS (The Common LISP Object System),19 which is most closely related to
Common LOOPS.

All these object-oriented extensions allow the use of multiple inheritance.
LOOPS also introduced multi-methods, which generalize message dispatch, so that the
choice of which method is executed for a given message can depend on the types of
the parameters as well as the type of the receiver of the message. Message dispatch
is normally achieved in these systems by dynamic lookup similar to that in
Smalltalk (this is further complicated by multi-methods). As in Smalltalk the
interactive nature of LISP systems, makes the global analysis that would be needed
to optimize message lookup very difficult.

Some other LISP-based object-oriented systems have a rather different
philosophy. The best example of this is Snyder’s CommonObjects39 which stresses
encapsulation over immediate flexibility.

Other systems deserve a mention in passing: T40 and Oaklisp41 are based on
the Scheme dialect of LISP, which is a natural choice for experimenting with novel
language constructs.42 T is interesting for its unformity and run-time efficiency.
Oaklisp and ObjVlisp43 provide more flexibility in the construction of classes than
other systems, by making the equivalent of the Smalltalk Metaclass hierarchy
manipulable by the programmer.

Actors

Actor languages model the view of an object-oriented system as a group of
communicating objects more closely. In an actor system all objects execute
concurrently, and messages between the objects either synchronize the objects’
execution, or are queued until the receiving object next attempts to receive a
message. Like Smalltalk-80, actor systems are usually uniformly object-objected, so
that everything in the system is represented by an object — this unfortunately rules
out many opportunities for optimization.

Actor systems were first proposed by Hewitt44 and this has led to several
actor-based languages, including the Act family,45 Plasma and Acore.46
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Object-Oriented Operating Systems

Many recent research operating systems have adopted an object-oriented
structure, where each object is the equivalent of a process in conventional operating
systems. This makes these systems most like actor systems, but with a much larger
granularity of objects. The advantages of this approach are seen to be:

• Message-passing communication between objects can be generalized
transparently to communication over a network, leading to transparent distribution.

• Parts of the functionality of the system can be put into objects. This allows
the decomposition of the majority of an operating system into independent parts,
which can be designed, developed, and tested independently. For example, it is
possible for an experimental version of the file system to be tested, while the old
(working) version is still in use by other users of the system.

• The trusted part of the system, which runs in kernel-mode and directly
manages the machine, can be made very small, so that it is less likely to contain a
mistake. The effects of errors elsewhere are limited by the same memory-protection
mechanisms that protect programs from each other.

• The kernel is less committed to any particular kind of the system, and could
support a range of different systems (possibly at the same time), since this
specialization occurs in the server processes outside it. This means that, from the
users’ point of view, sev eral different operating systems could co-exist on one
machine. This is rather like the virtual machine techniques that have been used for
many years, but the ‘‘virtualization’’ takes place at a higher level, and includes the
services provided by the kernel.

Examples of systems that have taken this approach are Mach,47 Amoeba,48

Minix,48 and Clouds.49 Eden50 took the object-oriented model further by making
files and other user-visible parts of the system into objects, and encouraging the user
to interact with them on this basis rather than using a traditional imperative
command language.

Object-Oriented Databases

‘‘Object-oriented’’ databases are also becoming available, although again we
find little agreement on precisely what this means. Some of these systems are
‘‘simply’’ persistent systems similar to Smalltalk, an example is GemStone,51 while
others provide ‘‘object-oriented’’ extensions to more conventional databases, as in
Postgres.52 The relationship of these systems to other object-oriented systems is not
always clear, but a common theme is that these systems provide much better support
for fine grained and highly structured data. Also they normally allow user-defined
abstract datatypes, in contrast to traditional databases that usually limit users to a
small number of built in types.
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1 . 5  Type Systems and Typed Object-Oriented Systems

A type system, in any language or system, is a framework for describing the
items that are to be manipulated. This information is then used in two different
ways:

1 To ensure that the system is type-correct, that is to verify that values are
always used, or combined in ways that are deemed to be permissible. This
removes the possibility of certain kinds of error existing in programs that have
been successfully type-checked, which is useful when it is necessary to trust
the system’s correctness.

2 To giv e the system more information about the described items. Sometimes
this information is vital for any kind of execution, for example the system
must be able to determine how to access the fields in a structure (or record).
In other situations this information allows execution to be more efficient, for
example some run-time checks might be proved to be unnecessary.

There is an important distinction depending on when the type information is
used, here we are particularly interested in statically typed systems, which are
systems where the type information is calculated, and used, during static analysis of
the program — usually during compilation. Other systems, particularly those which
are interactive or stress properties other than run-time efficiency, such as LISP,
awk,53 and icon,54 manipulate type information at run-time to ensure that values are
not misused, but do not use the information statically. This is more flexible, but
makes the types less useful for the purposes given above, and will not be considered
further.

There are several views of what exactly types are — see Donahue and
Demers55 for a less conventional view, based on the ideas of Reynolds56 — but in
some sense this does not matter. The important properties of a type system, beyond
the necessary self-consistency and safety, are the amount of useful information that
it can tell us about the system, and the extent to which it restricts those things that
can be done.

All type systems restrict what the programmer can do to some extent. Some
of these restrictions, such as not allowing a boolean value to be used as the address
of a structure, are quite reasonable, but others may not be. There may always be a
need for languages that either do not have types,† such as BCPL,57 or allow the
programmer to explicitly ignore the rules of the language’s type system, such as C
and Algol 68. However two dev elopments are encouraging more and more software
to be developed using strongly-typed languages, which do not allow such loop-holes.

First there is much concern about the increasing cost, complexity, and failure
rate of software, and strongly typed languages are seen as one step in improving
this situation. At the same time the theory underlying type systems has progressed
rapidly, and it is now possible to type-check many systems that could not have been
checked before. This means that the penalty accrued by using strongly-typed
languages is decreasing, and consequently the range of applications in which they

† Or more accurately, hav e a single type — usually a machine integer.



- 22 -

can be used is increasing.58

The items that must be described by a type system usually consist of the data
that is manipulated by the program, and the operations which are used to manipulate
it. Higher-order languages (or languages with first-class functions) reg ard the
operations as being values in their own right, and so type-correctness is a property
of the application of values to other values.

Most systems also require type information about variables that will hold the
data, so that the memory requirements of these variables can be determined
statically, and allowing operations on the variables to also be checked. Many more
recent languages, such as Standard ML and Russell,59 take this one stage further.
Types are given to the bindings of names to values, rather than to ‘‘variables’’, and
updatable values are simply values that allow their contents to be updated, and have
types which reflect this. Of course a name can be bound to an updatable value, just
as it can be bound to any other value, allowing the traditional view of ‘‘variables’’
as named updatable locations.

Some examples of types and notation

There are many different notations for types. Most examples in this thesis
will use that of the language fun, which was introduced for didactic purposes by
Cardelli and Wegner,10 so they could discuss types and related issues. The major
exception is in chapter 2, where all examples are given in Standard ML,60 and have
been successfully executed.

The simplest types are those which have no internal structure such as
Integer, Character, and Real. The type with a single value, called (),
Unit, or void is also surprisingly useful. These are often called type-constants.
Different systems make different decisions about exactly what type-constants should
be provided, for example Pascal61 has a subrange type of the form a..b rather
than the type-constant integer. Howev er these choices are essentially arbitrary,
and while they effect the expressiveness of the type system, they hav e little impact
on the mechanisms it must use.

A type system should also provide type-constructors which allow more
complex data structures to be built from type constants, and other constructed types.
These take the form of compile-time functions from types to types, but sometimes a
more convenient notation is used. For example, the most important type-constructor
is that for depicting the types of functions; the type of a function that takes a
parameter of type Real, and will return a result of type Integer might be
written:

Real → Integer

and a function trunc of this type might be declared by:

trunc: Real → Integer

It is also useful to be able to name types, here we will say:
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type convert = Real → Integer

which would allow the declaration:

trunc: convert

Other interesting and useful type constructors are for Cartesian products (for
grouping values), structures (for grouping labelled values), and tagged unions (for
allowing values that can take one of several types). Examples of these might be:

type IntPair = Integer × Integer
type Point = {x: Integer, y: Integer}
type IntOrReal = [a: Integer, b: Real]

Types constructed in this way can become very complex. Many types have
similar structure, so that it is convenient if the programmer can define his own type-
constructors, or type-functions, for example

typefn Pair[T] = T × T

type IntPair = Pair[Integer]

In this case we could regard type-functions as being macros that are expanded when
they are applied to type parameters, but in general this is not possible since type
functions can be recursive, and it is best to regard a type function as the definition
of a new type-constructor, mapping types to types.10 In practice this means that
inference rules for type-checking the application of type-functions must be defined.

A useful example of a recursive type-function, defines types for lists of values,
all of the same type.

typefn List[T] = [nil: (), cell: (T × List[T])]

Type-checking

Type-checking is the static verification that values in a system are only used in
ways that are allowed by the type system. This normally guarantees that a value
will not be used inconsistently, and so removes the possibility of some kinds of
error. It also verifies that the types that have been given to objects accurately
describe those objects, so that this information can be safely used by the compiler
when it chooses data representations, and when it is looking for program
transformations, and optimizations.

The programmer can specify the types of values explicitly, by including a type
declaration for a value, or implicitly by using an operation that requires values of
particular types. The type-checker must verify that there are no inconsistencies
between the types that the programmer has specified, and those which are inferred
for other values. Thus the inference of types for values becomes bound up with
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type-checking.

If we consider the type checking of an application of a function to a value we
will see these activities:

value f: Integer → Real =
fun(x: Integer)

...x...;

f(10)

The system knows that the type of the literal constant 10 is Integer. The type-
checker verifies that the application of f to this value is type-correct. It then infers
that the type of the result of the application is Real, so that it can check uses of
the result.

A type-system is described by two things: the inference rules which it can use
to relate the types of objects which interact, and the type-compatibility rules which
define how the system checks if a value can be legally used in the context in which
it appears.

Some systems such as Standard ML, attempt to deduce the type of functions
from the operations that they contain, and the types of other functions which are in
scope. This can only be done for some restricted type systems — in particular it is
important that every item can be given a unique most general type.62 Other systems
have chosen to provide a more sophisticated type system, that is one that allows
more programs to be type-checked, but can no longer infer types for groups of
functions. They can only check the type consistency of a function, and must be
given the types of all the other functions that are used, and sometimes the types of
some intermediate values also. Examples of systems that have resulted from this
choice are Fairbairn’s Ponder,63 and RSRE’s Ten15.64

Polymorphism

A very significant way in which modern type systems are more expressive
than those of languages like Pascal, and Ada, is with respect to their treatment of
polymorphism. This allows a function to be defined which can be applied to values
of several different types. For example the cons function which creates values of
the list type shown above should be able to work with lists of values of any kind.
Its type would be given by:

cons: ∀ t . (t × List[t]) → List[t]

This says that cons can be given a value of any type, and a list of values of the
same type, and it will return a list of values of that type. ‘‘∀’’ is pronounced ‘‘for
all’’, and expresses universal quantification over types — the type variable t ranges
over all the types in the type universe.
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Polymorphic types of this kind are extremely useful, for example they allow
types to be given to higher-order functions of the style first used in LISP, without
requiring run-time type-checking. Common examples are:

map: ∀ s,t . (s → t) → List[s] → List[t]
fold: ∀ s,t . ((s × t) → t) → t → List[s] → t

Existential quantification over types is another form of polymorphism which is
useful. Its use in defining objects forms the subject of chapter 4 where it will be
described in detail.

1 . 5 . 1  The Types of Objects

Many object-oriented languages have used run-time type-checking to ensure
that the messages that are sent to an object are understood by that object. However
the static use of types to prove that errors of this sort can never occur is the domain
of type-checking, and is as useful here as it is in traditional languages. The
question arises as to what type-model should be used to represent the types of
objects.

The important property of objects in this context is the property of substitution
(property 4) which says that objects that provide a common set of operations should
be able to be used interchangeably in contexts that only require the common
behaviour. Inheritance provides a way in which we can guarantee that the inheriting
class will have all the behaviour of its superclass. This suggests that the type of an
object should be associated with its class, and that instances of a subclass should be
able to be used in all the places where instances of the superclass are expected.
This has formed the basis of almost every typed object-oriented language, starting
with Simula-67, and ranging through C++, Trellis/Owl, and Eiffel.

Unfortunately there is a fundamental flaw with this type system; it is based
around an implementation technique for classes, namely inheritance, and not directly
around the set of operations that the objects provide — which is ultimately what is
important for the substitution property to work.

A clear example of this was first described by Snyder,16 when he considered
objects representing stacks and double-ended queues: a double-ended queue is like a
stack, except that push and pop operations are provided for both ends, so that data
can be pushed on at one end, and popped off at the other. A stack provides these
operations only for one end. It follows that, with suitable naming of the messages,
a queue object should be able to be used wherever a stack object is expected, which
would suggest that the queue class should inherit from the stack class.

We are now presented with a system that provides an efficient queue
implementation, and we have to define our own stacks. We would like to be able to
implement the stack class by inheriting the queue implementation, and hiding the
methods that access one end. This means that the inheritance we desire for the
implementation is the reverse of that which is needed for the types to be correct!
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More generally the type of an object should have no connection with the way
in which it is implemented. This can be achieved in (at least) two different ways:

1 Two different sorts of inheritance could be used, one to define the type of a
class, and the other to define the implementation. Where it is convenient these
inheritance hierarchies could be constructed in parallel, giving the same effect
as is offered by current systems, but this would be a choice that was made by
the implementor of the class, on a class-by-class basis.

2 The compatibility check between the types of objects to see if the substitution
rule can be used, could be based directly on their signatures, rather than the
way they were constructed.65 This is an extension of the use of structural
equivalence of types, as in Algol 68,66 to the type checking of objects.

Both these solutions can continue to work with the efficient message dispatch
scheme used by C++ which is described in the next section, but the second
approach is used in the rest of this thesis. It is more general, and can be easier to
implement, since explicit mechanisms for defining the type hierarchy do not need to
be provided.

This approach, based on structural equivalence or the conformity of types is
used by Emerald, which also replaces primitive classes by an object constructor
primitive. A function that returns the result of executing an object constructor is
similar to a class in other systems, but Emerald does not appear to have explicit
mechanisms for the inheritance or composition of object implementations.67, 68

1 . 6  The Implementation of Object-Oriented Systems

Here we shall review the implementation techniques that are commonly used
in class-based object-oriented systems. In particular the implementations of
Smalltalk-80 and virtual functions in C++ will be described, as these are
representative of the techniques that have been used in run-time typed, and statically
typed languages, respectively. C++ has probably the lowest overhead of any object-
oriented language, and so represents a good target for efficient implementations. To
be fair though, C++ achieves this by using the static type information, which places
some restrictions on the programmer. The additional problems caused by multiple
inheritance will be discussed later.

There are two related problems that are faced by any implementation of this
kind of object-oriented system:

1 Allowing the substitution of objects with related behaviours.

2 Implementing inheritance, which in turn implies that we should allow the fiv e
properties of inheritance given previously.

Both these problems are, in practice, solved by the same mechanism — the
dynamic binding of messages to methods, and in some sense it is the presence of
this dynamic binding that makes methods different from the procedures exported by
abstract data types. Dynamic binding allows the object that receives a message to



- 27 -

decide which method is to implement that behaviour.

Substitution is now allowed because the context into which an object is
substituted does not need to know anything about its methods, only about the
messages that it can send to the object. This requires a run-time representation of
messages, and for the dynamic binding to be inexpensive since it will occur with a
frequency similar to that of function calls in a conventional system.†

An object in these systems is represented by a pointer to the block of memory
which contains the object’s state, rather like a structure in conventional languages.
The first word in this block is provided by the system, and is used to implement the
dynamic binding of messages to methods that occurs in message dispatch. This
word is called the class pointer since it contains a pointer to information about the
class of the object. The rest of the block contains the object’s instance variables,
which are arranged so that, for every class, the state of its superclass precedes its
own state in the memory block.

For example consider the class hierarchy shown in figure 1.5, which shows
two classes, C and D, inheriting from class B, which itself inherits from class A.
Figure 1.6 shows how instances of these classes would be organised in memory.

A

B

C D

Figure 1.5: An Example Class Hierarchy

† Actually message sends are likely to occur more frequently than this would suggest, because the
encapsulation of objects implies that many things will need to be accessed by a message that would
be accessed directly, as a structure field say, in a conventional system. It is a major challenge to
these systems to show that this extra overhead can be acceptable, especially as the dynamic binding
makes it difficult for such functions to be compiled in-line.
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Figure 1.6: Memory Layout of Instances

Note that the instance storage for classes A and B is in the same place in all
these instances. This is important because, in general, it means that all the instance
variables defined by a class are at the same positions in all the instances, not just of
that class, but also of all the classes that inherit from it. Thus methods can have
the offsets of instance variables compiled into them, and continue to work with
instances of subclasses of their class.

The static and dynamic typed systems differ most in the implementation of
message dispatch, which will be discussed next.

Dynamic systems

In Smalltalk-80 the class pointer in an object points to another object that
represents the object’s class. One field in the class object points to the message
table for that class, which is a hash table directly implementing the message to
method mapping function for the messages defined by this class. Messages are also
represented by objects — they are symbols which are string-like objects that are
guaranteed to be unique in the system. This means that equality of object pointers
can be used to efficiently check for the equality of messages.

When a message is sent to an object, it is looked up in the message table
found in the object’s class. Two things can then happen, either a method is found,
in which case it can be invoked, or the lookup fails because the message is not
defined in this class. In this case another pointer in the class object is followed,
which points to the object representing the superclass of this class, and the lookup is
repeated. This continues until either a method is found in one of the classes, or the
superclass pointer is found to be nil, which means that the object does not
understand the message, and an error is reported.
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Notice that a message table may contain a mapping for a message that it
inherits from a superclass, this allows the class to insert its own definition
overriding the inherited one.

When the method is invoked it is giv en access to a pointer to the object for
which it is executing. If it sends messages to this object the lookup process starts
again at the bottom of the inheritance chain, giving the method access to overriding
behaviour. It is also possible for a method to send a message to ‘‘super’’, which
means that the lookup process for a message starts in the class immediately
inherited by the class in which the method is defined, so that the superclass’s
behaviour for the message can be accessed.

Using this technique several hash tables might have to be searched during each
message send — an operation that one would not expect to be very quick. However
in practice messages usually exhibit considerable dynamic locality. If a message is
sent to an object, then it is likely that the next send of the message will also be to
an instance of the same class. This means that a cache of the results of message
dispatch operations can considerably reduce the total cost of message dispatch, and
the resulting composite mechanism is efficient enough for practical use. Caching
the result of message dispatches in the code, at the point at which the message is
sent, further exploits this locality to good effect.34 Unfortunately the cost of any
particular message dispatch is still unpredictable, and will sometimes be worse than
before, since the cache must now be updated with the results of searches. Even so,
the best case remains significantly slower than a conventional procedure call.

The dynamic development environment which makes Smalltalk such a
productive programming environment also, unfortunately, makes the kind of global
analysis that is necessary to optimize message dispatch very difficult, since a change
to a class would have to be propagated to all the classes that inherit from it, which
might then need to be re-analysed.

Static systems

When C++ is compiled more information is available than when a Smalltalk
class is compiled, and this allows a much more efficient message dispatch
mechanism. In particular it is known from the object’s type that no message lookup
can fail. Single inheritance allows messages to be allocated linearly, superclass-first,
in just the same way as instance variables are allocated to positions in instances of
the class. A message in C++ is represented at runtime by an index into the object’s
message table which contains pointers to the methods arranged for that object. The
run-time action of sending a message to an object consists of following its class
pointer, which points to the message table, and indexing from this with the message
index. This is sufficiently simple that it can be compiled in-line at each message
send, and means that message sends require only a few memory cycles of overhead
in addition to that for a normal function call.

An example will clarify this procedure. Consider the C++ classes in program
1.1
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1:class A {

2: int ivar_a;

3:public:

4: virtual int getval();

5:};

6:class B : public A {

7: int ivar_b;

8:public:

9: virtual int getval();

10: virtual int set_b(int new_b);

11:};

Program 1.1

Here class B inherits the behaviour of class A, possibly overriding the definition of
the inherited method getval, and adding some new behaviour of its own.
Instances of A and B (called an_a and a_b) would appear in memory as shown in
figure 1.7.

an_a class pointer

ivar_a

Instance Message Table

code for getval

a_b class pointer

ivar_a

ivar_b

Instance Message Table

code for getval

code for set_b

Figure 1.7: Object Implementation in C++

Clearly the structure of the instance of B is an extension (in several places) of
the structure of A. Thus any code that is given a pointer to a_b instead of a
pointer to an_a will continue to work. However the message table entry for
getval can point to different methods in the different tables, so that the method
that is actually invoked by a getval message to a_b might not be the same as
that which would be invoked by the message being sent to an_a. The extra fields
that are present in the structures for a_b are not accessible using pointers declared
to be to objects which are instances of class A, since instances of A do not have
these fields.
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When the method found in the message table is invoked it is giv en, as an
extra parameter, a pointer to the receiving object, which the programmer can access
in the method using the pseudo-variable this. This pointer is also used to access
instance variables, and to obtain the class pointer for the object when messages are
sent to self. Thus messages to self can invoke overriding methods referred to by
this message table, that might have been defined by inheriting classes. Access to
overridden behaviour inherited from a superclass is simple since it can be
determined statically which method will be invoked by any inv ocation, and so a
normal C function call can be used.

It would appear from this description that additional behaviour provided by an
object cannot be accessed if the object can only be accessed by pointers declared to
be to instances of its superclasses, but this is not quite true. Consider an overriding
method for getval. Since this was defined in class B, when it is invoked the
parameter giving its self pointer is known to point to an instance of B, even though
the code that sent this message could only assume that it was an instance of class A.
This widening of the type is rather restricted, in comparison with the freedom
allowed by the run-time checking of the validity of message sends to objects, but
can nevertheless be used to good effect.

Multiple Inheritance

Multiple inheritance makes it impossible to allocate object resources in the
strict order of inheritance (unless the ‘‘linear’’ technique is used) which was used,
both for instance variables and messages in the previous techniques. There is a
simple solution to this problem, which is to let the offsets for fields of structures
change. This means that a run-time mapping from a structure tag, to its position in
the structure must be made. This is the approach adopted by Amber,69 which uses
caching techniques, similar to those for message lookup, to make this acceptably
efficient.

A more subtle approach, first suggested by Stein Krogdahl31, 30 is used to
implement multiple inheritance in version 2 of C++.70 The idea is to include in the
message table, for each method, the offset of the instance variables that it uses.
Since all these instance variables must have been declared when the class was
defined, they will occur as a single block of storage in the object. Thus a single
offset can adjust the self pointer to get a pointer to the instance variables. Careful
adjustments must then be made to these object pointers whenever coercions take
place.

Each method expects the first word of the instance storage it sees to be a class
pointer. This is important since it allows overriding behaviour that is in the
message table (there are now sev eral message tables for each class) to contain
different offsets which will maintain the self pointer even in the most complicated
cases, where messages to self invoke methods with access to different subsets of the
object’s state. Unfortunately this means that an object might now contain several
message table pointers, giving a small space overhead, but there seems to be no way
to avoid this.
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Chapter 2

Strongly-Typed First-Class Functions

Many recent languages and systems have explored the effect of removing
arbitrary, or implementation-driven restrictions. In particular Scheme,71 a dialect of
LISP, has promoted the use of first-class functions with lexical scope in the context
of conventional imperative languages.† First-class, or higher-order functions are also
common in functional, or applicative programming languages, as promoted by
Backus.73

First-class functions can be stored in variables, given as parameters to other
functions, and returned in the results of a function. The use of lexical scope means
that these functions carry with them the environment in which they were defined.
The combination implies that function activation records cannot always be allocated
on a stack, since an activation record might have to out-live the execution of the
function for which it was created in order to retain the environment for a function
defined within it. In the most general situations garbage collection is needed to
reclaim stack frames.

Scheme is a runtime typed language. More recently several languages with
first-class functions have been developed that are statically type checked. Examples
are Standard ML,60 Poly,74 and Russell.59 These languages have polymorphic type
systems, which are much less restrictive than the type systems of languages such as
Pascal, but are not sufficiently expressive for the efficient implementations of
objects.

In principle the choice of type system used by an implementation language
should have little bearing on the efficiency of the resulting implementation. In
practice however, this is far from the case. One aim of type systems is to provide
additional information that can be used by compilers so that they can verify the
validity of code improvements. An underlying theme of these chapters on the
implementation of objects, is a demonstration of the converse: unsophisticated type
systems can unduly restrict an implementation, forcing it to use less efficient
techniques. This is because sufficiently subtle relationships between functions and
values cannot be formally expressed, and thus the safety of applications of these
functions cannot be demonstrated to the system.

The combination of a function with hidden state is very similar to an object.
The purpose of this chapter is to demonstrate, in an informal but practical way, that
first-class functions, and objects are abstractions that can exhibit similar properties
and can be used to model each other. The use of first-class functions for this, in
run-time typed languages, is well understood,42 but here we are concerned with
statically strongly-typed languages.

† Scheme is also important for allowing the use of first-class continuations.72
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First the implementation of simple first-class functions by objects will briefly
be discussed. However objects have a richer structure than first-class functions, and
so most of the chapter will examine the modelling of objects by first-class functions.
First simple objects are described, introducing the basic techniques. Inheritance is
then discussed, and the implications for the type system examined. Finally the costs
of various ways of providing objects are discussed, before considering some of the
ways in which the current techniques for defining and using objects might be
extended using ideas from previous sections and the flexibility of first-class
functions.

C++ and Standard ML are the languages used for examples. C++ being used
for examples in an object-oriented language, and Standard ML for those requiring
first-class functions.

2 . 1  Objects Can Implement Simple First-Class Functions

Objects are, in a sense, generalisations of functions, since an object ‘packages
together’ the methods provided by it, which then share the state stored in the object.
Thus it is quite easy to use an object to get the same effect as a first-class function.
A function that does not access non-local variables is trivially mapped onto a simple
class, consider:

1:fun twice x = 2*x

Program 2.1

which is modelled by sending the message doit to an instance of the C++ class:

1:class twice {

2: int doit(int x);

3:};

4:int twice::doit(int x)

5:{

6: return 2*x;

7:}

Program 2.2

Now consider a function which, each time it is called, returns one more than
its previous value — as might be used to generate unique symbols. The normal
technique for maintaining this kind of local state is to store it in non-local variables,
viz:

1:val counter =

2: let val value = ref 0

3: in

4: fn () => ( value := !value + 1;

5: !value )

6: end

Program 2.3
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Line 1 introduces the definition of a value (in this case a function) called
counter, whose body is defined by lines 4 and 5. These occur in a scope that
includes value, defined on line 2 to be a cell initially containing the value zero.
Cells are explicitly de-referenced by the prefix operator ‘‘!’’, and are assigned new
values by ‘‘:=’’. The only reference in the system to the cell is from this function,
so that calls of counter return the values 1,2,3,..., etc. Thus we have
defined a single counting function. Usually more than one such function is
required, and so a more realistic example defines a function which returns a new
counting function each time it is called:

1:fun make_counter first_value =

2: let val value = ref (first_value - 1)

3: in

4: fn () => ( value := !value + 1;

5: !value )

6: end

Program 2.4

1:class counter {

2: int value;

3:public:

4: counter(int first_value);

5:

6: int next_value();

7:};

8:counter::counter(int first_value)

9:{

10: value = first_value - 1;

11:}

12:int counter::next_value()

13:{

14: value = value + 1;

15: return value;

16:}

Program 2.5

The equivalent using objects, written in C++, is given in program 2.5. Each
time the constructor counter is executed, a new counter object is created. Given
a counter object, called o, this can then be ‘called’ by evaluating
‘‘o.next_value()’’, which calls the method next_value.

In effect the programmer is explicitly manipulating the non-local state now
stored in the object, which would have been maintained automatically by first-class
functions.

Groups of first-class functions, which share some non-local state are naturally
mapped onto an object, holding the state, and a method for each first-class function.
However more complex sharing between functions might be difficult to model, since
each function may have access to a different subset of the non-local data, different
items of which might have different lifetimes.
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First-class functions also allow more flexible control over the visibility of
methods since references to those might also be caught as non-local data. Object-
oriented languages that allow such visibility to be controlled must do so by
language primitives, such as the private, public, and protected keywords
in C++, or by convention, as in Smalltalk-80.

Both ML and C++ are strongly typed languages, but no discussion of this was
required in these examples. In general monomorphic first-class functions can be
represented by C++ instances. No attempt has been made to map polymorphic
functions onto the more limited inclusion polymorphism provided by C++, and in
general this cannot be achieved without subverting the C++ type system.

2 . 2  First-Class Functions Can Implement Objects

It is obvious that the techniques of the previous section can be used ‘in
reverse’ so that simple objects are implemented by first-class functions, this
approach is discussed in references,42, 65 and elsewhere. The techniques will be
reviewed through an example, described by the C++ class definition given in
program 2.6.

1:class accumulator {

2: int acc;

3:public:

4: accumulator();

5:

6: virtual void add(int value);

7: virtual int total();

8: virtual char *image();

9:};

10:accumulator::accumulator()

11:{

12: acc = 0;

13:}

14:void accumulator::add(int value)

15:{

16: acc += value;

17:}

18:int accumulator::total()

19:{

20: return acc;

21:}

Program 2.6

A new accumulator object (‘‘a’’ say) would be created by the constructor
‘‘accumulator()’’. It then keeps a running total of all the values given to it by
calls such as ‘‘a.add(10)’’, which can be obtained by the rest of the program by
calling ‘‘a.total()’’. This leads quite simply to the ML equivalent in program
2.7 (image will be introduced in program 2.10).
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1:fun accumulator () =

2: let val acc = ref 0

3: in

4: { add = fn value => acc := !acc + value,

5: total = fn () => !acc

6: }

7: end

Program 2.7

Some observations should be made at this point. Firstly, the ML program
returns a record, the elements of which are the first-class functions implementing the
methods of the C++ object. It could equally well have returned a tuple, but it is
useful to be able to associate names with the functions. However it would not be
possible to return a list, since the functions do not all have the same type.

The functions both refer to the non-local cell acc, which is otherwise
invisible to the rest of the program. The value in the cell is increased by calls such
as ‘‘#add a 10’’, and the total is obtained by ‘‘#total a ()’’. The ML
notation ‘‘#xxx’’ provides a field selector function for the field xxx, and function
application binds to the left, so that ‘‘#add a 10’’ is equivalent to ‘‘(#add a)
10’’ and calls the function stored as field add in the structure a, with the
parameter 10.

Program 2.7 is very much shorter than its C++ equivalent, this is because the
type declaration can be elided in ML, but must be given in full in C++ (The C++
layout style also tends to make it longer). Both programs have well-formed types,
the type of accumulator in program 2.7 being:

unit -> {add: int -> unit,
total: unit -> int

}

It is possible to separate the definition of the methods, from that of the record
that is returned, which is sometimes useful, and is shown in program 2.8:

1:fun accumulator () =

2: let

3: val acc = ref 0

4: fun add value = acc := !acc + value

5: and total () = !acc

6: in

7: {add=add, total=total }

8: end

Program 2.8

A very basic facility in object-oriented programming is the ability to send a
message to self,† that is, to call another method defined for the same object as the

† In C++ a pointer to self is denoted by the pseudo variable this.
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method doing the call. Consider the C++ definition of the method image as
declared in program 2.6:

1:char *accumulator::image()

2:{

3: return itos(total());

4:}

Program 2.9
(Here itos is a (hypothetical) library function that returns newly allocated memory
containing the string representation of its number parameter.)

Since this is a method of the class accumulator, image could refer
directly to the instance variable acc. Instead the method intended for public access
to this value was used, which makes the image routine more independent of the
rest of the implementation of the class (something that only becomes important in
larger, more realistic classes), and interacts with inheritance, as will be seen later.
The fact that this is a message to self could have been made explicit by replacing
line 3 by the equivalent:

3: return itos(this->total());

but this is not necessary, since other methods of a class are directly in scope inside
a method, in the same way as the instance variables.

The complete ML implementation of this might be:

1:fun accumulator () =

2: let

3: val acc = ref 0

4: fun add value = acc := !acc + value

5: and total () = !acc

6: and image () = makestring(total())

7: in

8: {add=add, total=total, image=image }

9: end

Program 2.10
and this retains the simple syntax for the call of total. Howev er this is not a true
implementation of the C++ routine, since the call of total on line 6 is statically
bound to the implementation of the function, and so is not a message to self. In
contrast total in the C++ function (line 3, program 2.9) is resolved to the actual
method (by an array access) at run time.

It is worth noting in passing, that this ML program would correctly implement
the C++ program if the declaration of the method total (line 7, program 2.6) had
not included the keyword virtual, which would have directed the compiler to
bind calls to the method statically.

The dynamic binding of messages to self only becomes important when we
consider classes that inherit from accumulator, but it will be demonstrated in
this simpler case to ease the presentation of inheritance which follows. References
to this are a form of recursion,75 and introducing the recursion explicitly allows
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us to more closely model the C++ semantics.

First, it is convenient to define a type and a function to aid in the construction
of recursive references — ML pointers do not allow a Null-pointer value, as is
common in other languages, and so we construct this using a union:

1:datatype ’a pointer = none | ptr of ’a;

2:exception NotSet;

3:fun deref (ref(ptr x)) = x

4: | deref _ = raise NotSet;

Program 2.11

Typically a pointer ref will be created with the initial value none, and
will later be assigned the recursive reference. This can then be dereferenced by
calling deref. A correctly constructed program will never call deref before a
value has been assigned to the reference, so that the exception NotSet should
never be raised. In this way we can construct recursive data structures, which are
not allowed statically by ML.

This is used in the new definition of accumulator which includes a
message to self on line 14:

1:type accumulator_type = {add: int -> unit,

2: total: unit -> int,

3: image: unit -> string

4: };

5:fun accumulator () =

6: let

7: val acc = ref 0

8: val self = ref (none: accumulator_type pointer)

9:

10: val myself =

11: {add = fn value => acc := !acc + value,

12: total = fn () => !acc,

13: image = fn () =>

14: makestring(#total (deref self) ())

15: }

16: in

17: self := ptr myself;

18: myself

19: end;

Program 2.12

Here the type of the accumulator object must be defined, so that the initial
value of the variable self can be given the correct type — only rather limited type
inference is possible when refs are used.

So far we have seen that first class functions can be used to implement simple
objects, the next section will discuss the ways in which inheritance can be
introduced into this scheme.
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2 . 3  First-Class Functions and Inheritance

To discuss inheritance we will introduce some new C++ classes, which inherit
from the class accumulator defined by program 2.6. Inheritance is most often
used to extend the protocol of an existing class, as an example the class
s_accumulator extends the protocol of accumulator by adding a new
method called sub which subtracts its parameter from the value in the object. This
is done indirectly, by calling the inherited add, since the cell acc is not visible
outside accumulator. All the methods defined by accumulator are implicitly
defined for s_accumulator objects.

1:class s_accumulator : public accumulator {

2:public:

3: virtual void sub(int value);

4:};

5:void s_accumulator::sub(int value)

6:{

7: add(-value);

8:}

Program 2.13

This can be implemented simply in ML by having the object-creation routine,
call the routine representing the inherited class, and patch together the result and the
new method:

1:fun s_accumulator () =

2: let

3: val sup = accumulator ()

4: in {

5: add = #add sup,

6: total = #total sup,

7: image = #image sup,

8: sub = fn value => #add sup (˜value)

9: }

10: end

Program 2.14

This has the well-formed type:

unit -> {add: int -> unit,

total: unit -> int,

image: unit -> string,

sub: int -> unit

}

While this captures admirably the inheritance of the implementation of
accumulator, the type of this function is unrelated to the type of
accumulator. In contrast the type of C++ s_accumulator objects is a
subtype of the type accumulator. This means that wherever an accumulator
instance is expected, an s_accumulator instance may be used instead. In
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particular a variable declared as (pointing to) an accumulator might in fact be
(pointing to) an s_accumulator, or indeed any instance whose class inherits
from accumulator. This limited polymorphism is both cheap to implement, and
surprisingly powerful, but the lack of any subtype relationship in ML does not allow
it. It is safe, since any subtype must include (from the way it is constructed) all the
operations, and visible data items, of the inherited type.

Before discussing possible solutions to this problem, several more C++
examples will be presented to demonstrate the properties that are required from an
implementation. The first example shows the way in which this limited
polymorphism can be used.

1:class averager : public accumulator {

2: int items;

3:public:

4: averager();

5:

6: virtual int average();

7:};

8:averager::averager()

9:{

10: items = 0;

11:}

12:int averager::average()

13:{

14: return total() / items;

15:}

16:void averager::add(int value)

17:{

18: accumulator::add(value);

19: items++;

20:}

Program 2.15

Here the new method average has been defined, and the inherited function
add has been redefined, or overridden. The new version calls the old, resolving the
name using the scope operator ‘‘::’’. It also updates a counter, so that the average
can be calculated later.

Since this class is a subtype of accumulator an instance of it can be given
to a routine expecting an accumulator object, and then the average of the
numbers given to it can be found (but only using a reference to the object declared
as an averager).†

† This is a simplistic, and as a result slightly dangerous example. Note that it exposes
implementation details of the routines which use it — specifically, the number of times they call
add affects the result. Since these routines believe they are using an accumulator they may
not call this function in the simple way assumed.
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It only remains to see what happens when a method in an inherited class
refers to self.

1:class scaled_accumulator : public accumulator {

2: int scale;

3:public:

4: scaled_accumulator(int s);

5:

6: virtual int total();

7:};

8:scaled_accumulator::scaled_accumulator(int s)

9:{

10: scale = s;

11:}

12:int scaled_accumulator::total()

13:{

14: return scale * accumulator::total();

15:}

Program 2.16

Scaled_accumulator overrides total so that the value returned is
scaled by the factor (scale) set when the object was created. The new version of
total calls the overridden version, since the inherited instance variable is not
visible. Consider now the inherited method image, which returns a string
containing the representation of the value returned by total. When this executes
‘‘this->total()’’(line 3 program 2.9), the method defined in the subclass will
be called, so that image will be given the scaled result.

This dynamic binding of self in superclasses to the instance of the subclass
provides the access to overriding behaviour that was the fifth property required by
inheritance in the previous chapter.

2 . 3 . 1  Using Dynamic Type-checking

Of course LISP-like languages have been used to implement objects many
times. However these have always relied on the runtime-typed nature of the
languages,42, 76 which allows the use of objects as if they were instances of a
superclass, making program 2.14 a satisfactory implementation of
s_accumulator. Howev er, to achieve recursive references to self a more
dynamic mechanism is usually used.

The following examples are presented in a (hypothetical) runtime typed
language, with an ML-like syntax. The usual approach is to introduce a dispatch
function, which is called whenever a message is sent to an object. This function
then invokes the appropriate method. First we must re-implement accumulator
using this style:
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1:fun accumulator () =

2: let

3: val acc = ref 0

4: fun add value = acc := !acc + value

5: fun total = !acc

6: fun image = makestring (!self "total")

7:

8: val self = ref fn message . params =>

9: case message of

10: "add" => add params

11: | "total" => total params

12: | "image" => image params

13: | _ => raise does_not_understand

14: in

15: ( !self, (fn newself => self := newself) )

16: end

Program 2.17

Here ‘‘message . params’’ is intended to associate message with the
first parameter (which is expected to be a string), and params with the
remaining parameters, or with ‘‘()’’ if there are none. The dispatch function (lines
8-13) attempts to match the requested operation against those which are provided.
If found it applies the operation to its parameters, otherwise it raises the exception
does_not_understand, to communicate the runtime type error to the system.

Note that in a ‘‘real’’ implementation each operation would be named by a
unique symbol, so that the tests would simply be identity tests, rather than the
(expensive) string equality above. In classes with many methods the dispatch
function could use hashing, or some other search technique, to improve on the linear
search.

As before new objects are created by calling the function accumulator,
which now returns a pair. In normal use only the first element of this pair, the
dispatch function, is used, and the other function should be discarded. Local
references to the dispatch function are made through the variable self, for example
on line 6. The second function in the result pair allows the extended dispatch
function defined by a subclass to replace the one defined locally. Then a message
to self may be mapped by the dispatch function to a member function defined in the
inheriting class.
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1:fun scaled_accumulator scale =

2: let

3: val (super, set_super_self) = accumulator ()

4: fun total = scale * (super "total")

5:

6: val self = ref fn message . params =

7: case message of

8: "total" => total params

9: | _ => super message . params

10: in

11: set_super_self self;

12: ( !self, (fn newself => set_super_self newself;

13: self := newself) )

14: end

Program 2.18

This implementation of scaled_accumulator inherits from
accumulator by calling its creation function on line 3. This sets two variables
— super is used where the superclass’ un-overridden behaviour is required, such
as on line 4, and set_super_self, is used on line 11 to make the super object’s
self variable refer to the local dispatch function. A similar function is defined on
lines 12 and 13, so that a class that inherits this one can also install an even more
specific dispatch function. Thus the dispatch function of the ultimate class will be
the one used by all of its superclasses when they refer to self.

Runtime type checking has been used for two distinct purposes here, firstly it
has been used to allow the use of an instance of a subclass, where an instance of
the superclass was expected, and secondly it has been used in the definition of the
dispatch function. Specifically, it is needed to allow the communication of
parameters to member functions, and the returning of their results. It might appear
that this use could be avoided by changing the dispatch function to return the
method, which could then be applied to its parameters, however this would involve
an equivalent type insecurity, since the dispatch function would need to be able to
return functions of differing types.

It should be noted that these requirements for runtime type checking are not
inherent in the object-oriented technique — C++ is a sufficient counter-example,
where objects can be used within the requirements of strong type checking. The
problem comes from the type system of ML, and similar languages, which while
very expressive, do not have inclusion polymorphism. The type system proposed by
Cardelli65 shows one way in which these type systems might be extended to include
subtypes, and this will be discussed further in the next two chapters. In contrast the
following technique allows objects, with inheritance, to be constructed within the
constraints of an ML-like type system, albeit with a greater runtime cost.
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2 . 3 . 2  Using Type-coercion

The requirement for runtime type checking to allow the definition of the
dispatch function is avoided by returning to the previous mechanisms for dispatching
to methods, so that an object is again represented by a record of the methods. This
leaves the essential problem, the use of inheriting objects where instances of the
superclass are expected, which is removed by introducing a different, but equivalent
way of thinking about subtypes and inheritance.

If a class B inherits from the class A it is traditional to think of instances of B
as more specific versions of instances of A. Let a and b be instances of A and B,
respectively. Then b is a A, and can be used wherever a can be used. A different
way of looking at this is that whenever an instance of A is required, b’s type can be
changed (possibly automatically) to be indistinguishable from A. This will be called
type-coercion, note that this does not involve any change to the object (as might be
implied by coercion). Now inheritance becomes the specification of which type-
coercion operations should be provided. In this example a type-coercion which will
change b into an A should be provided, but not one type-coercing a to be a B.
Programs 2.19 and 2.20 use this technique to provide type-correct implementations
of the C++ classes accumulator and scaled_accumulator.

1:type accumulator_type = {add: int -> unit,

2: total: unit -> int,

3: image: unit -> string

4: };

5:fun accumulator () =

6: let

7: val acc = ref 0

8: val self = ref (none: accumulator_type pointer)

9:

10: fun add value = acc := !acc + value

11: fun total () = !acc

12: fun image () =

13: makestring(#total (deref self) ())

14:

15: val myself =

16: {add = add,

17: total = total,

18: image = image

19: }

20: in

21: self := ptr myself;

22: ( myself, (fn newself => self := ptr newself) )

23: end;

Program 2.19

Accumulator now has the type:

unit -> ( accumulator_type, accumulator_type -> unit )
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As before the object creation function returns a pair, the second element of
which should be discarded, except by another creation routine that is inheriting this
behaviour. Inheriting objects use the second function to install their version of self,
this time a method record, containing references to the overriding functions.

1:type scaled_accumulator_type =

2: {add: int -> unit,

3: total: unit -> int,

4: image: unit -> string,

5: accumulator_protocol: accumulator_type

6: };

7:fun scaled_accumulator scale =

8: let

9: val (super, set_super_self) = accumulator ()

10: val self =

11: ref (none: scaled_accumulator_type pointer)

12: fun total () = scale * (#total super ())

13:

14: val myself =

15: {add = #add super,

16: total = total,

17: image = #image super,

18: accumulator_protocol =

19: {add = #add super,

20: total = total,

21: image = #image super

22: }

23: }

24: in

25: self := ptr myself;

26: set_super_self (#accumulator_protocol myself);

27: ( myself,

28: (fn newself =>

29: (self := ptr newself;

30: set_super_self (#accumulator_protocol newself))) )

31: end;

Program 2.20

Which has the type:

int -> ( scaled_accumulator_type,

scaled_accumulator_type -> unit )

Thus an instance o, returned by the function scaled_accumulator can be
type-coerced to an accumulator by evaluating the expression
‘‘#accumulator_protocol o’’, which may then be used wherever an instance
of accumulator may occur. Howev er if the message total is sent to it, the
function defined in scaled_accumulator will be executed. Also the inherited
function image will use the overriding version of total.
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Similarly averager might be defined by program 2.21, giving it the type:

unit -> (averager_type, averager_type -> unit )

Here we see that as well as overriding the add function, an extra method
average is introduced that can be used wherever the true type of the instance is
known.

1:type averager_type =

2: {add: int -> unit,

3: total: unit -> int,

4: image: unit -> string,

5: average: unit -> real,

6: accumulator_protocol: accumulator_type

7: };

8:fun averager () =

9: let

10: val nitems = ref 0;

11: val (super, set_super_self) = accumulator ()

12: val self = ref (none: averager_type pointer)

13:

14: fun average () =

15: real(#total (deref self)()) / real(!nitems)

16: fun add value = ( #add super value;

17: nitems := !nitems + 1)

18: val myself =

19: {add = add,

20: total = #total super,

21: image = #image super,

22: average = average,

23: accumulator_protocol =

24: {add = add,

25: total = #total super,

26: image = #image super

27: }

28: }

29: in

30: self := ptr myself;

31: set_super_self (#accumulator_protocol myself);

32: ( myself,

33: (fn newself =>

34: (self := ptr newself;

35: set_super_self (#accumulator_protocol newself))) )

36: end

Program 2.21

In this way all the properties of inheritance given previously can be
reproduced in a strongly-typed language with first-class functions. Classes can be
defined that allow instances to be used as if they were instances of a superclass, and
methods defined in the subclass override those inherited from the superclass, while
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still being able to use the overridden methods themselves. Finally methods in a
superclass call overriding methods from the subclass, if they exist, in preference to
those in their own class.

The notational penalty for this is the requirement that instances are explicitly
type-coerced to the correct type. However there are already many other notational
overheads involved in all the definitions of objects we have seen, and an automatic
tool which generated these definitions would almost certainly be able to insert the
correct type-coercions.

Since each object-creation function calls the function returned by its super
object to re-bind self in the super object, and this in turn calls the function it
received previously, it is clear that the superclass chain can be arbitrarily long, and
general single inheritance can be used. But to achieve the inclusion polymorphism
a type-coercion value needs to be included for each class from which the object
inherits, both directly and indirectly.

2 . 3 . 3  Implementing Multiple-inheritance

This may be extended directly to multiple inheritance, where a class has more
than one superclass. The introduction of multiple inheritance to systems such as
Smalltalk-80 normally causes three problems:

• With single inheritance storage for instance variables can be allocated linearly
in instances, so that the storage associated with each class is always at the
same offset in instances regardless of the classes that might inherit it and also
contribute their own instance variables. This is not possible with multiple
inheritance, and so it is normally necessary for the offsets of a class’ instance
variables to be determined at runtime.

• In a similar way, systems such as C++ (before multiple inheritance was added)
allocated space in the arrays of method pointers linearly. So that the offset of
a particular method was always the same. Again this is not possible with
multiple inheritance.

• Multiple inheritance introduces possibilities for conflicts, for example when
methods for the same message, are inherited from more than one superclass.
Different systems have chosen to resolve these ambiguities in different ways,
so that programming in Eiffel77 is quite different from say, Flavors.78

Implementing inheritance by type-coercion the first two problems do not occur.
Instance variables are not stored in the object, but rather stored in closures and
accessed via references in methods, so they do not compete for offsets in object
storage. Also since the object record of a class is a different type from that of a
superclass there is no constraint that methods occur in the same positions in both,
only that one record can be made from the other.

Solutions to the third problem depend on the way in which multiple
inheritance is to be defined, but since the object records are constructed by hand (or
by a pre-compilation source-to-source translation) the programmer is free to resolve
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conflicts in any way that is desired, and indeed is free to experiment with different
resolution strategies. However this technique is biased towards the tree resolution of
conflicts, and other strategies would require more effort to model.

It is interesting to note that the type-coercion mechanism introduced here is
similar to that used by version 2 of C++, to allow multiple inheritance. However in
C++ the coercions are used to overcome the first two difficulties outlined above,
rather than attempting to allow inclusion polymorphism in a way that is type-correct
in the underlying implementation language.70

2 . 4  The Cost of Objects

The previous section showed how objects, with inheritance, can be constructed
in a strongly-typed language with first-class, lexically scoped functions. Here we
shall consider briefly the relative costs of the techniques presented. Both the
memory cost, and the runtime cost are of interest.

2 . 4 . 1  Memory usage

To put this discussion into context we will first consider the costs associated
with objects in a language providing explicit support, in this case C++.† In C++ an
object is simply a C structure that contains fields for each instance variable defined
in its class, and all inherited classes. If any of these classes include the declaration
of any virtual methods (as do all the examples here), a single class pointer is
added to the structure pointing to an array of pointers to all the virtual methods.
This array is shared by all instances of the class in the system, so the space
overhead of inheritance is a pointer per object, and a single array with one pointer
for each virtual method. This array could easily be a structure, like the records we
introduce in ML, which would allow its type to be more fully described, but this is
not important since it is not visible to the programmer.

When a message, corresponding to a virtual method, is sent to an object, the
object’s class pointer is followed, and the array indexed by a constant, which was
generated at compile-time to represents the message. The result is the pointer to the
code for the method. A pointer to the object is inserted as the first parameter of the
function. Thus the overhead in calling a method in addition to that for a ‘normal’
call is, pushing the extra parameter, indirecting to get the class pointer, and indexing
from this with a constant. The cost of objects in C++ is very small!

Next consider objects constructed using first-class functions in ML, but
without inheritance, as in program 2.7 defining accumulator, and reproduced
here:

† The following does not include the (small) extra overhead of multiple inheritance in more recent
research versions of C++.70
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1:fun accumulator () =

2: let val acc = ref 0

3: in

4: { add = fn value => acc := !acc + value,

5: total = fn () => !acc

6: }

7: end;

Program 2.7
In the following discussion a cell is the smallest unit of storage that can hold either
an integer value, or a reference to another cell — typically this will be four bytes.
Each time accumulator is called a cell, acc, is created. This is the storage for
the instance variables. In addition a record is created containing two references to
closures, one for each of the methods add and total, each of which contains a
reference to the non-local cell acc.

The exact amount of storage used for these data structures will depend on the
system, but a lower bound may be estimated. We will assume that a closure
requires one cell for each object to which the function has a reference, plus a cell
containing a reference to the function’s code. Thus each time accumulator is
called two cells are needed for the result record, two cells for each closure and one
cell for the updatable value acc. Giving a total of 2 + 2 × 2 + 1 = 7 cells.

It is assumed that all values, apart from integers, are boxed, that is, are
represented by pointers to storage, rather than being represented directly in the
containing data structure. If the closures could be included directly in the result
record, only 2 × 2 + 1 = 5 cells would be needed. Note that the in-line allocation of
data structures introduces many other problems, and the author knows of no system
that achieves it for user-defined data objects. It is not easy for acc’s storage to
also be included, since both closures require references to the same cell.

None of this storage can be shared by all instances of the class, and so the
implementation compares quite badly with the equivalent C++ requirement of 2 cells
per object, and 2 cells shared by all instances of the class.

An alternative would be to allocate the instance variables as fields in the
returned record, so that accumulator might become:

1:fun accumulator () =

2: let

3: val self =

4: {acc = ref 0,

5: add = fn value => acc := !acc + value,

6: total = fn => !acc

7: }

8: in

9: self

10: end;

Program 2.22
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This also requires 1 + 2 × 2 = 5 cells per object (with in-line contexts).† By removing
the recursive references, and adding a self parameter to each method the contexts for
the member functions can be shared — giving an implementation very similar to
that of C++. However neither approach has been pursued since the encapsulation of
objects is missing, and they are not amenable either to single inheritance in a
strongly-typed implementation language, or to multiple inheritance.

In the description of the costs of inheritance the following symbols will be
used:

M o
class = Memory cells per instance of class

M c
class = Memory cells shared by all instances of class

Fclass = Number of methods in class
Iclass = Number of instance variables defined by class
A(class) = The set of ancestor classes of class

Each closure returned by accumulator captures a reference to acc. In the
majority of classes there will be many instance variables, and most closures must
capture references to all or many of these. Thus, for a class c, the closure might
need Ic + 1 cells, giving a worst case total of:

M o
c = Fc for returned record of closures

+ Fc(Ic + 1) for closures
+ Ic for instance variables

If several methods all have references to many instance variables it is possible
for these to be allocated in a separate closure, to which each method’s closure has a
single reference. This is called closure hoisting, and is done by systems such as
T.79 In the ideal case, where all instance variables are allocated in-line in a single
closure the memory requirements might be reduced to:

M o
c = Fc for returned record of closures

+ 2Fc for closures
+ Ic for shared closure of in-line instance variables

If the correct closures can be allocated in-line (in the returned record) this might be
further reduced to:

M o
c = 2Fc for returned record of in-line closures

+ Ic for shared closure of in-line instance variables

which is still substantially more than C++’s:

† Actually the references to acc on lines 5 and 6 would have to be constructed using pointers, to
be legal. This artificially increases the space overhead, and so is not shown here.
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M o
c = Ic + 1 and M c

c = Fc

Assuming all the instance variables require a single cell.

If inheritance is now included the memory costs for C++ become:

M o
c = 1 +

d ∈A(c)
Σ Id and M c

c =
d ∈A(c)
Σ Fd

The analysis for first-class functions is too complex to present in full. An
object requires all the storage which its superclasses define. Space is also needed
for the type coercion values, to which the object records must include references.
Object records returned by superclasses must, in general, be kept, since these are
used when methods use inherited, but locally overridden behaviour. Howev er the
set_super_self functions can be discarded after they hav e been used — indeed
they should not be kept since they provide a way in which the consistency of the
object could be destroyed.

To put these discussions into context we might consider a ‘typical’ class,
defining 3 instance variables, 5 methods, and inheriting from 1 other ‘typical’ class.
Each C++ instance of this class requires 7 cells, with 10 cells shared by all
instances (and even fewer if methods override inherited behaviour). The worst case
procedural implementation may use as many as 64 cells per object, which might be
improved to ‘only’ 34 cells by closure hoisting and unboxed closures.

2 . 4 . 2  Run-time costs

The run-time costs of the procedural implementation of objects are more
encouraging. Sending a message to an object only requires that the correct function
is obtained from the object record, which is then invoked with the parameters. So
the overhead in addition to that of a normal function call is the record access —
almost the same as for C++. Object creation is more expensive howev er, both
because the object is constructed by iteratively invoking all the superclasses, and
since much more memory must be allocated, and initialised. A new overhead
introduced by this technique is the execution of the type-coercions, but these are
also simple record accesses so the overhead is small. However it should be
remembered that the type-coercions must be constructed when the object is created,
so the real cost is hidden here. It might be possible to construct some type-
coercions when they are first needed, which would be more efficient in many
situations.

2 . 4 . 3  Comparison with Dynamic Type-checking

An implementation based on dispatch functions typically uses less memory.
The context for the dispatch function need only contain references to methods
defined in its class, together with references to the dispatch function from the
superclass, and a reference to its own code. This replaces the object record, and the
type-coercion values are not required. Constants, such as the names of the methods,
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can be shared by all instances of the class, as is the code of the dispatch function.

However the cost of a message send is much higher. When a message is sent
to an object, its dispatch function must search for the method to be executed. A
simple linear search will require, on average, half as many tests as there are
methods defined in the class. This can be improved by hashing, but this requires
more memory, none of which can be shared by all the instances of the class, unless
an extra level of indirection is introduced.

Furthermore, the search through the superclasses to find a method defined in a
superclass and not overridden must execute one dispatch function for each class.
All except the last of these dispatch functions will determine that the method is not
defined in that class, which requires the worst case search, testing against all the
local methods. This could be avoided by ‘copying down’ inherited methods into the
dispatch functions of inheriting classes. However this makes these tables as big as
the object record, or even larger if the tables are sparse for hashed searching.

Thus the type-coercion technique for implementing objects, as well as being
type-safe, makes sending messages to objects more efficient than using dispatch
functions, at the expense of greater per-object memory requirements.

2 . 5  Extensions to Inheritance

New ways of thinking about constructs provided by programming languages
often suggest extensions to the existing mechanisms, and new ways in which the
mechanisms might be used. Considering inheritance as a mechanism for
automatically providing type-coercion operations up the sub/super-type hierarchy (ie.
towards the root), suggests downwards type-coercion. This would allow an instance
to be type-coerced to be an instance of a subclass of its actual class.

This addresses an important weakness in existing object-oriented systems when
using libraries of existing classes. Inheritance is intended to promote the use of
libraries, since it allows libraries to be specialised for the specific problem being
solved, however a difficulty occurs when code in the library creates instances of
other classes, since the client has no opportunity to provide its own class, inheriting
from the library class. Consider an integer class in a library that does not provide a
method for the message factorial. It is easy to define a new integer class,
inheriting from the one in the library, which adds this method, however
factorial is still not defined on any of the integer objects that are returned by
other library routines.

What is needed is a way to type-coerce an instance of a class into an instance
of a class which inherits from it. For this to be safe, the type-coercion must
provide methods for all messages that the subclass adds to those inherited from the
superclass. It might also override inherited methods, but care must be taken since it
is not clear whether these overriding methods will, or indeed should, be visible to
those in superclasses. As an example of this, consider the following function which
type-coerces an instance of accumulator into an instance of
scaled_accumulator.
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1:fun scale_acc acc scale =

2: {add = #add acc,

3: total = fn () => scale * (#total acc ()),

4: image = #image acc,

5: accumulator_protocol = acc: accumulator_type

6: }

Program 2.23
This function returns an object of the same type as instances of
scaled_accumulator, and so it could be used wherever an instance of
scaled_accumulator is expected, however the behaviour of the object is not
quite the same. In particular the image method returns the string representation of
the value stored in the instance of accumulator, rather than the scaled value,
since the overriding of total is not visible to the superclass. An alternative type-
coercion function might be:

1:fun scale_acc acc scale =

2: {add = fn inc => #add acc (scale * inc),

3: total = #total acc,

4: image = #image acc,

5: accumulator_protocol = acc: accumulator_type

6: }

Program 2.24
and this correctly duplicates the scaled_accumulator behaviour, by changing
the value held by accumulator. Howev er this would not be possible if, for
example, accumulator made other use of its value, or the scale factor could be
changed. Another alternative would be to override image, but this implies that its
definition is known, and that the state required for its implementation is visible
through the other methods.

A more general solution would be for all records representing objects to
contain references to the set_super_self function returned when the object is
created, in much the same way that they contain the type-coerced versions of the
object, unfortunately this would increase the size of all objects, and provide a
mechanism that would allow an object’s behaviour to be modified from outside.

Downwards type-coercion is quite simple if no methods from the object are
overridden. This only leaves the possibility of adding new protocol to an object, an
ability which is still extremely useful. More general downwards type-coercion can
usually be achieved by the creation of a new instance of the target class, as is
presently necessary for all downward type-coercion, however this does not preserve
sharing relationships with other parts of the program that might have references to
the object, and may be changing or accessing its state. Thus, while downwards
type-coercion is not a complete solution to these problems, it does provide an
additional capability which may useful in many practical situations.

When objects are defined using inheritance and first class functions, the
description must explicitly include the type-coercions to the super-types. What
would it mean if these type-coercions were not given? It would not be possible to
use such an object in place of an instance of its superclass. Thus this is a technique
for hiding the details of the implementation of the object, it no longer being
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possible to determine that the object was constructed by inheriting from another.

Conversely it would be possible for type-coercions to be present that return
objects that appear to be instances of classes that are not actually superclasses of the
original object. Any object represented by a record with methods of the same type
as those defined by a class may be used in place of instances of that class — of
course, it is also helpful if the behaviour is in some sense compatible.

Together these possibilities allow the classes from which an object appears to
inherit, to be different from the actual way in which it is defined. This would allow
the separation of the conceptual and implementation hierarchies, as is proposed by
Halbert and O’Brien,80 and by Snyder.16

Using type coercion it is also very easy to provide or-inheritance† as proposed
by LaLonde, Thomas, and Pugh.81 Since this only involves subsetting an object’s
protocol, it can be implemented directly, and does not suffer from the difficulties of
downwards type-coercion.

More generally, sev eral type coercions might exist which provide unrelated
subsets of an object’s protocol. For example, the operations on the writing end of a
queue object could be separated from those acting on the reading end. This would
allow the ends to be disseminated separately to different parts of a system. In a
conventional object-oriented system extra objects would have to be introduced to
represent the ends, which is less efficient, and requires more forethought when the
classes are designed.

2 . 6  Conclusions

First-class functions and objects are each powerful enough to provide many of
the facilities of the other. In particular it is possible to use first-class functions in a
statically strongly-typed language, such as Standard ML, to provide objects by
programming in a particular style. This style defines the way in which objects are
created, and messages sent to them. In a strongly-typed language it must also make
explicit the conversions where an object is to be regarded as an instance of one of
its superclasses.

First-class functions are less specific, and hence more general, programming
constructs than classes and objects, so implementing objects using first-class
functions allows the advantages of object-oriented programming, while also allowing
the use of more expressive first-class functions when they are needed. The
underlying system does not have to directly support both mechanisms, and ensure
compatibility between them. This can be compared with Smalltalk-80 whose block
construct is similar to a first-class function, with semantics which cannot easily be
defined in terms of objects and message-passing.

† This is probably better described as intersection-inheritance in contrast to ‘normal’ multiple
inheritance where the resulting protocol is the union of those of its superclasses.
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Regrettably the space required by objects constructed in this way is much
greater than that which might be expected from a system providing objects directly.
Thus it is unlikely that the techniques described could get more than limited use in
practical programs. However a basic duality between the constructs is demonstrated,
and the development of the technique helps to identify the areas where the strong
typing of Standard ML is inconvenient. The following chapters investigate
progressively more expressive type systems, which allow objects to be constructed
more efficiently.

Despite possible inefficiencies, objects which are constructed in this way can
provide a more flexible environment in which to experiment with different ways of
defining objects, than is possible in a system which provides objects directly.
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Chapter 3

Subtype Relationships

There have been several suggestions that subtype relationships between
structure types can be introduced into type systems to allow the construction of
10objects.65, This chapter investigates how subtype relationships can be used, but
shows that they are still not sufficient to enable the efficient construction of objects.

3 . 1  The Subtype Relationship

The raison d’être of subtype relationships is the substitution rule, viz:

A is a subtype of B if, and only if,
wherever an instance of type B is expected,
an instance of type A can be given instead.

The Substitution Rule

This rule both guides us in the definition of subtype relationships, and shows us
how they can be used. It allows a value to be substituted for a value of a supertype
at run-time without causing a type inconsistency, or run-time error. This is
reminiscent of the substitution property of objects defined in chapter 1, and indeed
the intention is that subtype rules can be used to enable systems to support the
substitution property.

The subtype relationship becomes the type compatibility rule of the type
system, previously this allowed an object to be used only if its type was equal to
the expected type. Now a value whose type is a subtype of the expected type can
also be used, which means that more programs are now type-correct, and so we
have a more flexible type system.

In particular an instance of type A can be assigned to a variable declared to
hold instances of type B, or given as an actual parameter when calling a function
which is declared with a formal parameter of type B. The subtype relation can also
be thought of in terms of the generality of the type, so that if A is a subtype of B,
then B is more general than A.

The phrase ‘‘x is a subtype of y’’ will often be denoted by ‘‘x ≤ y’’. The
subtype relationship is a partial ordering on types, and if the type system includes
‘‘bottom’’ and ‘‘top’’ types, makes the type system a lattice. The reverse
relationship will also be used:

A is a supertype of B if, and only if, B is a subtype of A.

and ‘‘x is a supertype of y’’ denoted by ‘‘x ≥ y’’.
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Subrange types

Languages such as Pascal and Ada allow subranges of the integer types.
Subranges are subtypes of the integer type, and other subrange types. For
example the type t: 3..10 is a subtype of both the type s: 2..20 and the
type integer. This allows a variable of type t to be used wherever values of
type s, or type integer are required, such as assignments to variables of these
types. In contrast an arbitrary integer value cannot be assigned to a variable of type
t without some guarantee that it will be within the correct range of values.

It is clear that a value with a more restricted range may always be used where
values from a greater range are expected. Thus the subtype relationship between
subrange types can be formalized as follows:

Let s = sl .. sh

and t = tl .. th

then
s ≤ t if, and only if, sl ≥ tl and sh ≤ th

Subtype Rule 1

and we can see that this guarantees the substitutability of values of the subtype. A
more general, but in this case equivalent, way of defining this would be to say that
s is a subtype of t, if and only if, the set of all the values allowed by s is a subset
of the set of all values allowed by t.

Structure types

If we now consider the structure type, there are at least two useful ways in
which subtype relationships might be defined. The important properties that we
expect of structures are that they contain several fields each having a type, and
identified by a tag, which is unique in the structure. The value of a field can be
extracted from a structure given the tag, and (in languages which allow assignment)
the value of a field in a structure can be changed, again given the tag. The tags are
usually part of the type of the structure, and new tags cannot be added, or existing
tags removed from structures without changing their type.

This suggests that in order to satisfy the substitution rule, an instance of a
subtype structure must contain all the tags of the supertype, and that the values
associated with the tags must themselves be usable wherever the corresponding
value from the supertype can be used — the substitution rule again. Formally, we
have:
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Let s = { m1: s1, m2: s2, . . . mi: si }
and t = { n1: t1, n2: t2, . . . n j: t j }
then

s ≤ t if, and only if,
∀ k, 0 < k ≤ j,

∃ l s.t. ml = nk

and sl ≤ tk

Subtype Rule 2

This implies that i ≥ j, ie that the subtype structure can have more, but not fewer
fields than the supertype. To illustrate this with some examples,

{ a: int, b: character} ≤ { a: int }

{ a: int, b: character} ≤ { b: character }

{ a: int, b: character} ≤ { b: int }
if, and only if,

character ≤ int

but

{ a: int, b: character} ≤/ { c: int }

This definition of the subtype relationship between structure types is very
powerful, and we shall return to it later. Howev er many languages have chosen a
more restrictive definition, which allows a more efficient implementation. The
restriction is on the order in which the fields appear in the structure, so that the
supertype must be a prefix of the subtype, viz:

Let s = { m1: s1, m2: s2, . . . mi: si }
and t = { n1: t1, n2: t2, . . . n j: t j }
then

s ≤ t if, and only if,
∀ k, 0 < k ≤ j,

mk = nk

and sk ≤ tk

Subtype Rule 3

which means that

{ a: int, b: character} ≤ { a: int }

but now
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{ a: int, b: character} ≤/ { b: character }

The advantage of this definition is that the position of each field in instances
of the supertype is the same as its position in any instance of any subtype. Thus if
a structure is used where an instance of one of its supertypes is expected, all the
fields that can be named are at the same position in the structure as they would
have been if an instance of the supertype had been used. These positions can be
calculated at compile-time, so that allowing the possibility of the substitution of a
structure by a subtype requires no additional run-time cost.

Some systems, such as (current) Ten15,82 have an even more restricted subtype
relation between structure types, which does not allow the subtype to introduce
fields not appearing in the supertype. This is too restrictive for the discussions
below, and will not be considered further.

So far the subtype relationship has been described as a relationship between
existing types. In contrast most object-oriented systems use the subtype relationship
as a mechanism by which types are constructed. New types are defined by
inheriting properties from supertypes, and then adding more properties. As a result
the new type is a subtype of the inherited types by construction. The choice of a
relationship between existing types, or a property that is true because of the method
of construction of types, is the same as the choice between structure or name
equivalence of structure types in languages such as Pascal, and Algol-68. In effect
the definitions of the subtype relationship given above are simply weaker statements
of the rule for structure equivalence in Algol-68, viz:

Let s = { m1: s1, m2: s2, . . . mi: si }
and t = { n1: t1, n2: t2, . . . ni: ti }
then

s = t if, and only if,
i = j

and ∀ k, 0 < k ≤ i,
sk = tk

Algol-68 Structure Compatibility Rule

The requirement that the fields’ tags are the same is also removed here, so that the
type of a field is associated with its position in the structure, and the tag strings are
removed entirely from the global meaning of the type.

It is important to note that the subtype relationship provides a partial order on
types, while the structure equivalence rule is defining equivalence classes of types.
However the rules are related by:

A = B if, and only if, A ≤ B and B ≤ A

so that structure equivalence can be stated using the subtype relationship.
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Structure equivalence is weaker than name equivalence, in the sense that more
structures are equivalent using structure equivalence. As a result, types that are
structure equivalent but not name equivalent are of some interest. Name
equivalence, together with opaque types can be used to hide the information in a
structure. An opaque type is a type for which only the name is known, so that even
if the actual type is known, the contents of instances of the type cannot be accessed.
In contrast, if the programmer has an instance of a type, and knows, or guesses its
structure, a system based on structure equivalence will allow unlimited access to the
contents. In most languages this is not an issue, since structure types normally
provide access operations to their fields automatically, and inseparably from the type
itself. But it is the mechanism used to hide the representation of data structures
defined by modules in Modula-2 using opaque pointers.7 Also R. T. House has
implemented a particularly elegant package mechanism for Algol-60 based on this
hiding mechanism.83

Programming environments offer, through persistent objects and their types,
other opportunities to use this kind of encapsulation mechanism. The type of a
structure can be used like a capability, allowing a program to have references to a
value, without necessarily allowing access to its contents. Systems which use
structure equivalence must provide this encapsulation using other mechanisms such
as lexical scope, as in chapter 2, or existential quantification over types, which will
be described in chapter 4.

Function types

The substitution rule can be applied to function types, where the usual subtype
rule is:

Let s = s p → sr

and t = t p → tr

then
s ≤ t if, and only if,

sr ≤ tr

and t p ≤ s p

Subtype Rule 4

Note that while the result type of s can be any subtype of the result type of t, the
relationship must be reversed for the parameter types. This phenomenon is called
the contra-variance of the parameter type — in contrast the result type is said to
display co-variance.

Contra-variance allows s to have a parameter type which is a supertype of the
parameter type of t, but since we can use the substitution rule when the function is
called we can provide a value with any subtype of s p, which might also be a
subtype of t p. What s cannot do is to restrict the range of parameter types which
are acceptable more than t does.
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This defines the subtype relationship between functions of a single parameter.
Rather than generalizing this rule it is convenient to allow the parameter to be a
Cartesian product type, which also provides a natural extension to multiple return
values.

Cartesian products

The subtype relation for Cartesian product types is similar to the most
restrictive relation for structures seen above:

Let s = s1 × s2 ×... si

and t = t1 × t2 ×... t j

then
s ≤ t if, and only if,

i = j
and ∀ k, 0 < k ≤ i,

sk ≤ tk

Subtype Rule 5

Cartesian products have sev eral advantages over structures, but are less flexible.
They are typically syntactically easier to manipulate, so they can be used
conveniently for function parameters and results. Also this subtype rule means that
the sizes of Cartesian products are known at compile time, so space can be allocated
for them more efficiently. In practice many systems do not explicitly construct a
product containing the parameters to a function, instead it is implicitly represented
by the contents of registers, and other scattered storage.

Updatable values

Following Ten15,82 the type of an updatable value, or Ref, will be written
‘‘Ref[A=>B]’’. Values of this type are created by the ref constructor, and allow
two main operations:

Assign: ∀ a,b . Ref[a => b] × a → ()
Contents: ∀ a,b . Ref[a => b] → b

A is the type of the items that can be assigned to the Ref, and B is the type of the
items that can be read back. To ensure type-safety we must have that A ≤ B, so
that communicating a value through a Ref can force us to use the value in a more
general way, but cannot allow the value to be used in places where the original
value could not be used.

Like function types, Refs display contra-variance in the first parameter, making
the subtype rule:
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Ref[si => so] ≤ Ref[ti => to] if, and only if,
so ≤ to

and ti ≤ si

Subtype Rule 6

This should not be confused with the type of the value which can be assigned to a
Ref, which can obviously take any subtype of the Ref’s assignment type.

Most of the references that we see are not involved in interesting subtype
relationships, having the same type for values being assigned and taken out. We
shall use the notation:

Ref[a] ≡ Ref[a => a]

which implies the degenerate subtype relationship:

Ref[s] ≤ Ref[t] if, and only if, s = t

Subtype Rule 7

There is also a coercion available on Refs:

Read_only: ∀ a,b . Ref[a => b] → Ref[|_ => b]

where |_ (or ‘‘bottom’’) is the type containing no values. Of course it is not
possible to create a value of this type (since there are none), and so it is not
possible to use the Assign function on the resulting Ref, i.e. it is a read-only Ref.
The read-only version of a Ref is a supertype of the original Ref, since |_ is a
subtype of every type, so we can always use a writable Ref where a read-only one
is expected.†

It is important that this is not creating a new Ref value, but rather creating
another view of the same Ref value, which has a different (but related) type. This
means that views of the Ref value may still exist that allow assignment to it, and so
successive calls of Contents on a read-only Ref are not guaranteed to return the
same result.

This leads us to an interesting interaction between the read-only coercion and
the subtype relationships between Ref types. This can be illustrated as follows:

Consider types s and t, such that s ≤ t, and define

† The coercion making a Ref write-only can also be useful, since it formalizes the communication
protocol through a shared Ref. A write-only Ref might also be used to represent an uninitialized
value.
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type S = Ref[s => s];
type T = Ref[t => t];

then S ≤/ T, since Refs are contra-variant in their assignment type. However if we
create some values of these types, and read-only views of them

value sval: S = ref(...);
value tval: T = ref(...);

value ro_sval: Ref[|_ => s] = Read_only(sval);
value ro_tval: Ref[|_ => t] = Read_only(tval);

we now see that Ref[|_=> s] ≤ Ref[|_=> t] and so ro_sval can be substituted for
ro_tval. This allows us to get some of the benefits of a subtype rule on Refs that
was co-variant in the assignment types, without the insecurities this would introduce.
There are parallels here with the way that problems due to the contra-variance of
function parameter types can be avoided by putting the parameters into the non-
locals of the function, which will also be used later.

Type-functions

Since type-functions are not simply macro-expanded, the subtype relationships
involving them must be defined explicitly. In the following Ψ(s, t) and Ω(s, t)
denote type expressions, possibly containing free occurrences of s and t.

Let typefn F[t] = Ψ(t)
then

F[x] ≤ Ω if, and only if,
Ψ(x) ≤ Ω

given F[x] ≤ Ω
and

Ω ≤ F[x] if, and only if,
Ω ≤ Ψ(x)

given Ω ≤ F[x]

Subtype Rule 8

Notice that when we are checking if a type is the subtype of another, we are only
concerned that the subtype relationship is consistent. The rules given here use this
fact to allow recursive type-functions to be checked by allowing the result to be
assumed during the verification of the relationship with the body of the type-
function.

This leads to the corollary:
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Let typefn F[s] = Ψ(s)
and typefn G[t] = Ω(t)
then

F[x] ≤ G[y] if, and only if,
Ψ(x) ≤ Ω(y)

given F[x] ≤ G[y]

Subtype Rule 9

However it is important to remember that x ≤ y does not necessarily imply
that F[x] ≤ F[y], since the formal parameter might occur in a contra-variant context,
say as the parameter type of a function type. Type-functions for which this property
can be proved are said to be monotonic.

3 . 2  Subtype Relationships for Defining Objects

It has been shown in the previous chapter how objects can be defined using
static scope to provide encapsulation, and type-coercion to allow the substitution of
instances of different types. In this chapter we will discuss the ways in which
objects can be constructed when the underlying language provides subtype
mechanisms such as those described in the previous section, and the implications of
different implementation techniques.

As before we shall discuss various implementations of accumulator-like
objects — that is objects that accumulate the values which they are given. These
are convenient since simple examples can be given which display the whole range
of properties that we expect from an object-oriented system. In particular we can
show the encapsulation of objects, and mechanisms for their construction. When we
look at subclasses we see the inheritance of implementations, using both the
extension and overriding of inherited behaviour. This leads to the most subtle
problems involving the use of inherited behaviour in the definition of overriding
methods, and access to overriding behaviour, via the self reference from the
superclass.

It should be remembered that the class is really a mechanism for
‘‘programming in the large’’. This can make the notational overhead for simple
examples appear unreasonable, however the overhead is fixed, and so is less
important in realistic classes.

Using scope for encapsulation

We start with a simple accumulator class, which will be used as the superclass
for the classes that follow. It may be defined by:
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1:type Accumulator =

2: { add: Integer → (),

3: total: () → Integer,

4: image: () → String

5: };

6:value make_accumulator:

7: () → (Accumulator × Accumulator → ()) =

8: fun()

9: let acc: Ref[Integer] = ref 0

10: and self: Ref[Accumulator] = ref

11: { add = fun(value: Integer)

12: acc := !acc + value,

13: total = fun()

14: !acc,

15: image = fun()

16: itos(!self.total())

17: }

18: in

19: (!self, fun(ns: Accumulator) self := ns)

20: end;

Program 3.1

This implementation of the type Accumulator uses lexical scope as the
encapsulation mechanism, to hide the concrete implementation and actual run-time
state of an accumulator from the rest of the program. The creation routine returns a
pair, the first element of which is the created object, the second element being used
by inheriting classes so that they can change the binding of self, allowing the
methods defined in make_accumulator access to overriding methods. An
alternative approach to this problem will be presented later.

As an example of a class that inherits this behaviour, consider the definition of
make_scaled_accumulator in program 3.2, which creates Accumulator-
like objects, which automatically scale the total by a given factor.

1:type Scaled_Acc =

2: { add: Integer → (),

3: total: () → Integer,

4: image: () → String,

5: set_scale: Integer → ()

6: };



- 66 -

7:value make_scaled_accumulator:

8: () → (Scaled_Acc × Scaled_Acc → ()) =

9: fun()

10: let scale: Ref[Integer] = ref 0

11: and (super, ss_self):

12: (Accumulator × Accumulator → ()) =

13: make_accumulator()

14: and self: Ref[Scaled_Acc] = ref

15: { add = super.add,

16: total = fun()

17: !scale × super.total(),

18: image = super.image,

19: set_scale = fun(ns: Integer)

20: scale := ns

21: }

22: in

23: ss_self(!self);

24: (!self, fun(ns: Scaled_Acc)

25: self := ns;

26: ss_self(ns) )

27: end;

Program 3.2

Here we see that an instance of the superclass is created, on line 13. Some of
the inherited methods from this instance are then returned in the object result
structure, together with the local overriding method definition for total, and the
additional behaviour of set_scale. Line 23 installs the new view of the object’s
behaviour in the superclass’ self reference, using the function it provided for this
purpose, and lines 24-26 provide a new function which another inheriting class can
use in turn.

Scaled_Acc ≤ Accumulator using either Subtype Rule 2, or 3, which
means that the calls on lines 23 and 26 are type-correct, as is the call on line 16 of
program 3.1, which would now inv oke the overriding definition of total.

Separating the representation

It is important that this method of construction for objects does not require the
object receiving a message to be given as a parameter in the invocation of a
method. This is important because the subtype rule on functions (Subtype Rule 4)
does not allow this in the ‘obvious’ way. To explain this we will consider a simpler
representation of classes, and show where it is unsatisfactory. The construction
follows more closely the way in which objects are implemented in C++ — an object
is represented by its storage, together with a structure of its methods.
Implementations of Accumulator and Scaled_accumulator are shown in
programs 3.3 and 3.4. (‘‘&’’ is the structure concatenation operator, which can be
used in the construction of structure types, and values.)
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1:type Accumulator =

2: { funcs: { add: Accumulator × Integer → (),

3: total: Accumulator → Integer,

4: image: Accumulator → String

5: },

6: store: {

7: acc: Ref[Integer]

8: }

9: };

10:value make_accumulator: () → Accumulator =

11: fun()

12: { funcs =

13: { add = fun(self: Accumulator,

14: value: Integer)

15: self.store.acc :=

16: !self.store.acc + value,

17: total = fun(self: Accumulator)

18: !self.store.acc,

19: image = fun(self: Accumulator)

20: itos(self.funcs.total())

21: },

22: store =

23: { acc = ref 0

24: }

25: };

Program 3.3

1:type Scaled_Acc =

2: { funcs: { add: Scaled_Acc × Integer → (),

3: total: Scaled_Acc → Integer,

4: image: Scaled_Acc → String,

5: set_scale: Scaled_Acc × Integer → ()

6: },

7: store: {

8: acc: Ref[Integer],

9: scale: Ref[Integer]

10: }

11: };
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12:value make_scaled_accumulator: () → Scaled_Acc =

13: fun()

14: let super = make_accumulator()

15: in

16: { funcs =

17: { add = super.funcs.add,

18: total = fun(self: Scaled_Acc)

19: !self.store.scale

20: × super.funcs.total(self),

21: image = super.funcs.image,

22: set_scale = fun(self: Scaled_Acc, ns: Integer)

23: self.store.scale := ns

24: },

25: store = super.store & { scale = ref 0 }

26: };

Program 3.4

The problem is that Scaled_Acc is no longer a subtype of Accumulator.
This is caused by the definition of the methods on lines 18 and 22 which need to
declare self with the correct type so that references to the instance variable
scale (such as that on line 19) are possible. The contra-variance of function
parameter types means that the types of these functions are not subtypes of the
corresponding types in Accumulator.

The previous implementation of these classes did not suffer from this problem
since the instance variables of the object were bound into the non-locals of the
methods, rather than being passed as a parameter. This has the added advantage
that the instance variables cannot be accessed directly, providing the encapsulation
that is expected of an object. However it is much more expensive in terms of the
amount of memory used, since new closures must be created for every method in
ev ery object. In the faulty approach the same closure could be used for a method
in every instance of the class, and with care even the structure of methods could be
shared in this way. This is an example of a situation where we can prove that a
construction is safe, but are not able to express this in the type system, and so
cannot ‘‘convince’’ the system to accept the program.

Using less memory

The subtype relationship has allowed us to save memory elsewhere though.
Previously it was necessary for a type-coercion structure to be included in every
object for every superclass of that object’s class. This is not needed here because
the subtype relationship and the substitution rule allowed the types to be compatible.

It is important to note that while the examples here were constructed using
methods from the superclasses, the fact that the resulting classes’ types were
subtypes of the superclasses did not depend on this method of construction. This
means that any class with the same type as Scaled_Acc from program 3.2 would
also be a subtype of Accumulator.
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In the common case where the subclass is implemented in terms of the
superclass, we can use subtype relationships to further reduce the memory
requirements of objects. In programs 3.1 and 3.2 the closure of each method would
usually contain a pointer to each of the instance variables to which the method
refers. Some systems, most notably the Orbit compiler for T,79 will attempt to
share some of this storage by an optimization called closure hoisting, but a subtype
relationship allows the programmer to force the maximum amount of sharing to
occur, by allowing the instance variables to be brought together into a single
structure, to which each method’s closure needs only to keep a single reference.

A different way of providing the self reference will also be introduced here.
This requires a different view of what is going to constitute a class. Instead of the
single object-creation function that we saw in programs 3.1 and 3.2, and in the
previous chapter, a class definition will now export three functions, as well as the
necessary types. These will be called the ‘‘make’’ function, the ‘‘mk’’ function, and
the ‘‘close’’ function. Normal clients of the class will only need access to the make
function, which creates new instances of the class, but classes that inherit the
implementation of this class do so by using the other two functions. The mk
function, creates the representation of the state of an instance of the class, and the
close function, creates a structure of methods with references to a given
representation hidden in their closures.

To construct the recursive references to self it is convenient to define a variant
of Ref, which we will call ‘‘ChoiceRef ’’. This is very similar to the type
constructor, pointer, which was used in the previous chapter, and is introduced
for the same reasons. It differs from a Ref, in that a newly created ChoiceRef does
not need to be given an initial value. Any attempt to get the contents of a
ChoiceRef that has not been explicitly assigned a value will cause a run-time error,
but this should never occur in well-formed programs. The subtype rules for
ChoiceRef are the same as those for Ref, and the coercion to allow the creation of
read-only versions can also be used.

To demonstrate the improved sharing, and the use of ChoiceRef, we must first
re-implement the class Accumulator. (The classes’ types are the same as in
programs 3.1 and 3.2)

1:type Acc_rep = { acc: Ref[Integer] };

2:type Acc_selfrep =

3: { self: ChoiceRef[|_ => Accumulator] } & Acc_rep;

4:value mk_accumulator: () → Acc_rep =

5: fun()

6: { acc = ref 0 };
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7:value close_accumulator: Acc_selfrep → Accumulator =

8: fun(me: Acc_selfrep)

9: { add = fun(value: Integer)

10: me.acc := !me.acc + value,

11: total = fun()

12: !me.acc,

13: image = fun()

14: itos((!me.self).total())

15: };

16:value make_accumulator: () → Accumulator =

17: fun()

18: let cr: ChoiceRef[Accumulator => Accumulator] =

19: make_choice_ref();

20: and me = { self = Read_only(cr) } &

21: mk_accumulator();

22: and res = close_accumulator(me);

23: in

24: cr := res;

25: res

26: end;

Program 3.5

This organisation removes the necessity for the function result that was
previously attached to each object that was created, so that an inheriting class could
insert an appropriate value for self. Now an inheriting class’ mk and close
functions use those from the class it is inheriting, and all classes provide their own
make function that creates an appropriate self reference, using a ChoiceRef, and
calls the other functions appropriately.

Now the inheriting class Scaled_Acc becomes:

1:type SAcc_rep = Acc_rep & { scale: Ref[Integer] };

2:type SAcc_selfrep =

3: { self: ChoiceRef[|_ => Scaled_Acc] } & SAcc_rep;

4:value mk_scaled_accumulator: () → Acc_rep =

5: fun()

6: mk_accumulator() & { scale = ref 1 };
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7:value close_scaled_accumulator:

8: SAcc_selfrep → Scaled_Acc =

9: fun(me: SAcc_selfrep)

10: let super: Accumulator = close_accumulator(me);

11: in { add = super.add,

12: total = fun()

13: !me.scale × super.total(),

14: image = super.image,

15: set_scale = fun(ns: Integer)

16: me.scale := ns

17: }

18: end;

19:value make_scaled_accumulator: () → Accumulator =

20: fun()

21: let cr: ChoiceRef[Scaled_Acc => Scaled_Acc] =

22: make_choice_ref();

23: and me = { self = Read_only(cr) } &

24: mk_scaled_accumulator()

25: and res = close_scaled_accumulator(me)

26: in

27: cr := res;

28: res

29: end;

Program 3.6

The most important point to make about this is that
ChoiceRef[|_=>Scaled_Acc] ≤ ChoiceRef[|_=>Accumulator] since Scaled_Acc ≤
Accumulator, so that SAcc_selfrep ≤ Acc_selfrep. This means that the
representation of the subclass can be used where the representation of the superclass
is expected, which is particularly important on line 10, where the representation of
the subclass is bound into the closures of the inherited operations. The subtype rule
on ChoiceRefs is also important since it allows access to overriding methods.

Objects constructed in this way can be expected to use somewhat less memory
than using the previous technique. Each method’s closure now need only contain a
reference to the object’s representation, rather than a separate reference to each
instance variable to which it refers, and possibly a reference to self also. However
the closure still needs to keep a reference to each inherited method that it calls
directly, such as on line 13 — the equivalent of a super call in Smalltalk — since
these references are not in the version of self stored in the representation.

This separation of the clients’, and the inheritors’ interfaces to a class reflects
the fact that an inheriting class can often manipulate its inherited behaviour in ways
that are not allowed to normal clients. For example in Smalltalk-80 an inheriting
class has access to the instance variables that it inherits, while C++ provides an ad
hoc mechanism, in the form of the public, private, and protected
keywords whereby the access allowed to different kinds of clients can be specified.
CommonObjects39 takes the other extreme view, and only allows inheriting classes
the same access to their superclasses as would be allowed to any other client.
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The mechanisms introduced here make this distinction between kinds of clients
obvious, but since it is not possible to hide the objects’ representation, do not give
the programmer more control of visibility. This can be achieved using existential
quantification of types, which is the topic of chapter 4.

3 . 3  Multiple Inheritance

Multiple inheritance is very useful, particularly when the behaviour of objects
is more finely sub-divided so that there are more opportunities for behaviour to be
shared. However it introduces several problems that are not seen with single
inheritance, and different object-oriented languages have chosen different solutions to
these problems. An advantage of constructing objects from other language
primitives, as is described here, is that it leaves the programmer free to resolve these
problems in the way that is deemed most appropriate for the task in hand. It is
ev en possible, with care, for several different solutions to be used in different parts
of a single system.

The examples in the previous section are all correct using the more restrictive
subtype rule for structures (Rule 3), which requires that the supertype must be a
prefix of the subtype. This is always possible when we want single inheritance,
since we can always arrange for the superclass’ fields to occur first in the subclass,
but when a class is to have sev eral superclasses it is no longer possible to put all
their fields first. Thus for multiple inheritance the less restrictive subtype rule (rule
2) is needed. Unfortunately this means that the position of a field within a structure
can no longer be calculated at compile-time, and some kind of dynamic look-up is
needed. This is done in Amber69 which uses a cache of the offsets calculated for
recent structure field accesses to decrease the overhead of dynamic look-up.

The techniques used are an obvious extension of those described in the
previous section. We will extend the previous example to create a subclass of the
Accumulator class as defined in program 3.1, which is displayed as a graphic
object. The resulting class might form the basis of a simple dial. Problems with
using the class organisation of program 3.5 will be discussed later.

First we outline a class providing the appropriate behaviour for displayed
objects, this is given in Program 3.7.

1:type Point = Integer × Integer

2:type Displayed =

3: { make_image: () → Bitmap,

4: draw: () → (),

5: undraw: () → (),

6: move: Point → ()

7: }
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8:value make_displayed:

9: Point → (Displayed × Displayed → ()) =

10: fun(iposn: Point)

11: let posn: Ref[Point] = ref iposn

12: and bits: Bitmap = ref NullBitmap

13: and on_screen: Boolean = False

14: and self: Ref[Displayed] = ref

15: { make_image = fun()

16: raise "Should not be called",

17: draw = fun()

18: if !on_screen then !self.undraw();

19: on_screen := true;

20: bits := !self.make_image();

21: xor_to_bitmap(screen_bitmap,

22: !posn, !bits),

23: undraw = fun()

24: if !on_screen then (

25: xor_to_bitmap(screen_bitmap,

26: !posn, !bits);

27: on_screen := False

28: ),

29: move = fun(np : Point)

30: let old_on_screen = !on_screen

31: in

32: !self.undraw();

33: posn := np;

34: if old_on_screen then

35: !self.draw()

36: end

37: }

38: in

39: (!self, fun(ns: Displayed) self := ns)

40: end;

Program 3.7

This is an abstract class which means that it provides some behaviour, but it does
not provide enough for direct instances of it to be useful. Instead the class is used
as a receptacle for a set of related behaviours that are expected to be useful to
inheriting objects. These are expected to redefine (at least) the make_image
method so that the object displays an appropriate image when it receives the draw
message.

A local reference to the bitmap actually put on the screen is kept by the object
so that it can always remove the correct image in the undraw method. There is a
problem with this, which is that the displayed object might be garbage collected
before it can remove its image from the screen bitmap — problems of this kind are
the subject of chapters 5 and 6.
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Note that the variable screen_bitmap is non-local to the class. This could
be a global variable, but it is possible that the reference bound into the non-locals of
make_displayed is the only reference in the system. This would mean that all
access to screen_bitmap would have to be through classes derived from
displayed. This technique of forcing access to a device or datastructure through
a class is very useful since it means that it cannot be misused.

In this case a class with a non-local is similar to class with a class variable,
or access to a pool in Smalltalk-80. The important difference is that no special
support was needed for the mechanism, either from the object-oriented veneer that
we are discussing, or from the underlying language, rather it is a natural
consequence of the presence of first-class functions, which are fundamental to the
whole discussion. This makes the system much more flexible, since the patterns of
use do not need to be decided in advance by the language designer, and is one of
the reasons why we wish to implement object-oriented techniques on top of a
system with first-class functions, rather than simply using one of the many existing
object-oriented languages. In this case we are led towards the concept of first-class
classes, and particularly classes that are returned in the results of a function — there
are many possibilities in this direction to be explored.

We can now inherit Displayed to define a subclass of Accumulator
from program 3.1 which maintains its value on the screen.

1:type Disp_Acc =

2: { add: Integer → (),

3: total: () → Integer,

4: image: () → String,

5: make_image: () → Bitmap,

6: draw: () → (),

7: undraw: () → (),

8: move: Point → ()

9: }
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10:value make_disp_acc: Point → (Disp_Acc × Disp_Acc → ()) =

11: fun(posn: Point)

12: let (supacc, ss_supacc):

13: Accumulator × Accumulator → () =

14: make_accumulator()

15: and (supdisp, ss_supdisp):

16: Displayed × Displayed → () =

17: make_displayed(posn)

18: and self: Disp_Acc =

19: { add = fun(value: Integer)

20: supacc.add(value);

21: !self.draw(),

22: total = supacc.total,

23: image = supacc.image,

24: make_image = fun()

25: string_to_bitmap(!self.image()),

26: draw = supdisp.draw,

27: undraw = supdisp.undraw,

28: move = supdisp.move

29: }

30: in

31: ss_supacc(!self);

32: ss_supdisp(!self);

33: (!self, fun(ns: Disp_Acc)

34: self := ns;

35: ss_supacc(ns);

36: ss_supdisp(ns) )

37: end;

Program 3.8

There are few surprises here — using subtype rule 2 it is clear that
Disp_Acc ≤ Displayed, and Disp_Acc ≤ Accumulator, as we require, and
that the techniques generalize in the obvious way to more than two superclasses.

The essential semantic problem introduced by multiple inheritance, but not
seen here, is that of conflicts when methods with the same name are inherited from
more than one superclass. A solution to this is to tag each field name with a
representation of its type, so that two inherited methods can only conflict if they
have the same type, in which case the conflict must be resolved by providing an
overriding method. This may be practical in a pre-processor which is producing
code from an explicit class syntax, but not when the classes are being written by
hand. It also requires a form of overload resolution at the point of call which will
not be trivial in the presence of subtypes. A more satisfactory solution can be
provided by using type-coercion, but that removes the need for the subtype
relationship entirely.

Languages with multiple inheritance must also solve this problem for instance
variables. The most convenient solution in the system presented here is to uses
Snyder’s tree resolution. This is easy to achieve using the techniques of program
3.1, but not with the instance variables collected together in a structure, as in
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program 3.5, even with the modified subtype rule, since several fields with the same
tag would be needed. This is the same problem as with inheriting conflicting
methods, and similar solutions based on renaming might be considered.

3 . 4  Conclusions

Possible ways in which objects might be constructed in a system with
appropriate subtype relationships have been discussed. These implementations of
objects are more efficient than those in chapter 2 which do not use subtypes, but
still cannot approach the efficiency, particularly in terms of memory usage, that can
be achieved by systems defining objects as primitives.

However the techniques do not appear to provide an adequate implementation
of multiple inheritance, even when the less efficient subtype rule that was
specifically intended for multiple inheritance is used. The problems are caused by
conflicting method declarations, which are inherited from more than one class, and
in general make it difficult to define a class that is a subtype of several other
arbitrarily-chosen classes.

These remaining issues will be addressed in the next chapter.
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Chapter 4

Existential Types

Mitchell and Plotkin first introduced existential quantification over types to
model abstract types,84 and this has since been extended to the types of modules.10

Cardelli also introduced the use of subtypes to represent the use of inheritance,
which is discussed in the previous chapter. Howev er it was shown, in the example
of program 3.4, that the subtype rule appropriate for functions does not have the
properties that one would like to allow the construction of objects. As a result the
construction of objects is much less efficient (particularly in terms of space) than
can be achieved in systems with direct support for objects, such as C++ or
Smalltalk-80. This chapter shows that an efficient implementation of objects can be
achieved using a combination of existential quantification over types, and type
compatibility based on an appropriate subtype rule.

4 . 1  Existential Quantification

Existential quantification over types is similar (and indeed related to) the more
common universal quantification over types. It allows us to manipulate values
without knowledge of the exact types that are involved, instead we can say ‘‘There
is a value, of some type’’, and manipulate this value in a limited way.

Unlike other type constructors, simple existential types are not very useful; it
is necessary to have a certain amount of structure in an existential type before it
becomes useful. The simplest existential type is the type

∃ t . t

which simply says ‘‘there is a value, which has a type’’. However since no
information about the properties of the value can be gained from the type, there are
no non-trivial operations which can be applied to the value, and so it can never be
used. In fact, this is the type Top, or |

_
, which forms the biggest type in the type

lattice, when we have a subtype relationship. A simple existential type with which
we can compute is:

∃ t . t × (t → Integer)

which describes a type for a pair, the second element of which is a function which
can be applied to the first element of the pair to yield an Integer. Pairs having this
type include:

(1, succ),
(2, lambda x . x-1),
([1,2,3], length),

and (1.5, truncate_to_int)

using obvious names for common functions. Once these values are coerced to the
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existential type given above they (by definition) all have the same type, and so it is
possible for a non-homogeneous list of these values to be constructed, while
remaining type-safe, and without requiring run-time interpretation of types.

Like subtypes, existential types introduce the possibility that a value can have
several types, for example consider the pair:

(3, 1.5) : Integer × Real

This also has the existential types:

(3, 1.5) : ∃ t . t × Real
(3, 1.5) : ∃ t . Integer × t
(3, 1.5) : ∃ t,s . t × s

and of course

(3, 1.5) : ∃ t . t

Less obviously in a type system that includes a subtype relationship, it also has the
type:

(3, 1.5) : ∃ t . t × t

This is because all types are subtypes of Top, so

(3, 1.5) ≤ (|
_
, |

_
)

and
(|
_
, |

_
): ∃ t . t × t

Pack and Open

The multiplicity of types for values means that it is usually necessary to
explicitly coerce a value to give it an existential type. The pack and open
operators from Cardelli and Wegner’s language fun10 will be used here. The syntax
for pack is:

pack[s = t in Ψ(s)]v

Where we again use Ψ(s) to represent a type expression with free occurrences of s.

This returns a value with type ∃ a . Ψ(a), and is type correct if the value v
has the type Ψ(t). This can be thought of as hiding the occurrences of the type t in
the type expression Ψ(t) behind a new existential type. For example:

pack[a = Integer in a × (a → Integer)] (2, succ)

gives the value discussed before, with the type ∃ a . a × (a → Integer).
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Open is used when we wish to compute with a value of existential type.

open p as x[t] in expression... end;

introduces two new tokens whose scope is the in...end block. X is a new name for
p, the value that was being opened, which can be used as a normal value, parts of
which have the (unknown) type t. Thus if p is the result of the pack statement
above, then

open p as x[t] in (second x)(first x) end

yields the result 3. Many systems should be able to type-check expressions
involving values with existential types without the explicit use of open, in which
case it will only be needed if the local type identifier is required. However to avoid
possible confusion, open will always be used explicitly in the examples that follow.

4 . 2  The Subtype Relationship for Existential Types

We hav e seen that existential types allow two values of different types to be
coerced to the same type, in a way that still allows them to be involved in
computations. This is similar, but not the same as, the way that a subtype rule
allows values of one type to be substituted for values of a supertype. The subtype
relationship allows a value with sufficient properties to be used instead, while
existential quantification specifies what is not known about a value, but we can use
information that can be deduced from the context around the unknown types. The
question arises as to how these kinds of substitution properties might interact, and
so we wish to find subtype relationships involving existentially quantified types.

To motivate the subtype rule, it is useful to first examine the substitution
property of existential types: the type compatibility rule for such types could be
stated (rather informally) as:

∃ a . Ψ(a) = ∃ b . Ω(b)

if, and only if
Ψ = Ω

But to avoid problems with the meaning of the equality of type expressions we shall
actually use:

∃ a . Ψ(a) = ∃ b . Ω(b)

if, and only if
for all t ε Types . Ψ(t) = Ω(t)

where ‘Types’ is the set of all possible types in the system.†

† Note that ‘for all’ is used for the logical statements, rather than ‘∀’, to avoid confusion with the
notation for universal quantification.
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The proposal is that a subtype relationship between existential types is defined
analogously, viz:

∃ a . Ψ(a) ≤ ∃ b . Ω(b)

if, and only if
for all t ε Types . Ψ(t) ≤ Ω(t)

A subtype rule such as this must not introduce the possibility that a value can be
misused. Two justifications of it will be given, first an informal one, and then one
based on the model of types as sets of values.

It is interesting that this subtype rule does not directly involve the existential
type, but only the type expression in which it appears. This means that it should
not conflict with other subtype relationships involving existential types that might be
provided by a type system. In particular this means that it could be used with
Cardelli and Wegner’s bounded existential types.

Informal justification

Informally it is convenient to think of the type expressions Ψ and Ω as
defining the shapes of the values that the existential types describe, while parts
within this shape are hidden behind the existential type tokens a and b.

If we have some operation that is expecting a value with the type ∃ b . Ω(b)
then it can only rely on the shape Ω in its operation, b being unknown. Thus the
substitution of a value with a shape Ψ should be possible if we could guarantee that
Ψ(b) was a subtype of Ω(b). Our subtype rule states that Ψ(t) ≤ Ω(t) for all
possible types that t could take — which must include the type that is hidden
behind the existential b! However we wish to make the substitution not with Ψ(b),
but with Ψ(a) — a type with the same shape, but a different existential. But no use
can actually be made directly of values of type b, so changing from one unknown
type to another can not affect the execution of the program. The new unknown
values can only be manipulated in ways consistent with the shape of the whole
value, and we have already argued that this is unaffected by the substitution of a
value of the subtype’s shape.

Unfortunately the reverse implication might be stronger than is necessary. If
there is a type t, such that Ψ(t) ≤/ Ω(t), given a value of the type ∃ a . Ψ(a) we do
not know if the type hidden by the existential is t or not, and so cannot be sure if
the existential types are subtypes. A static type system must assume the worst in
this situation, in order to be safe in the presence of the substitution rule, and so is
forced to conclude that the existential types are not subtypes. Thus the ‘‘and only
if ’’ is the result of pessimism forced on the type system rather than an inference.
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Justification if types are sets

If we regard types as being sets of values, a more satisfactory justification of
this subtype rule can be made. In fact, not all sets represent reasonable types, and
in practice types are represented by special kinds of sets, called ideals. Howev er
since here we are comparing types, rather than constructing new types, this does not
affect the following discussion.

Here T(t) will mean ‘the set of values that are of the type t’. An existential
type is represented by the union of the type sets of all the types it could possibly
hide, i.e.

T(∃ t . Ψ(t)) = ∪
t

T Ψ(t)

This is because a value of existential type could actually be a value of any of the
types formed by Ψ(t). In contrast the type set of a universal quantification is the
intersection of the type sets of the types formed by the type expression, since a
universally quantified value must have all these types simultaneously.

The subtype relationship can be defined very simply using the set
representation of types,

s ≤ t if, and only if, T(s) ⊆ T(t)

which says that all values of the subtype are also values of the supertype.

Now

T(∃ a . Ψ(a)) = ∪
s

T Ψ(s)
and

T(∃ b . Ω(b)) = ∪
t

T Ω(t)
Thus

∃ a . Ψ(a) ≤ ∃ b . Ω(b)
becomes

∪
s

T Ψ(s) ⊆ ∪
t

T Ω(t) (1)
and the condition

for all t ε Types . Ψ(t) ≤ Ω(t)
becomes

for all t ε Types . T Ψ(t) ⊆ T Ω(t) (2)

The argument is straight-forward: Each element of ∪
s

T Ψ(s) from (1) must
be an element of at least one set T Ψ(t), for some t. Thus, by (2), it is an element
of at least the corresponding set T Ω(t), and so also a member of ∪

t
T Ω(t).

Checking the subtype rule

Even if a subtype rule does not introduce any inconsistencies into the type
system it is of little use if it cannot be implemented reasonably easily. The subtype
rule suggested here is more complicated than the established ones presented earlier,
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but it is reasonable to expect type-systems to achieve the necessary inferences. The
problem can be split into two stages. In the first stage the type expressions that are
to be compared must be identified. This may involve moving existential quantifiers
through unrelated type declarations to get both types into a canonical form, which
would be where all quantifiers have been moved to the innermost possible scope.
For example, if we are checking the subtype relationship:

∃ t . Integer × { a: t, b: t → Integer }
≤ Integer × ∃ s . { a: s, b: s → Integer, c: s → Real }

it is easiest if this is first transformed into the equivalent:

Integer × ∃ t . { a: t, b: t → Integer }
≤ Integer × ∃ s . { a: s, b: s → Integer, c: s → Real }

which is then simplified to:

∃ t . { a: t, b: t → Integer }
≤ ∃ s . { a: s, b: s → Integer, c: s → Real }

In the second stage we check the condition that the type expressions are in the
subtype relationship for all types. This can be achieved by substituting a unique,
unevaluated type identifier for the existential type identifiers in both type
expressions, and then comparing them. If they can be proved to be subtypes
without the need to introduce constraints on the unevaluated type identifier (apart
from the obvious ‘‘t ≤ t’’ and ‘‘t ≥ t’’) then the condition is satisfied for all types,
and the subtype relationship is proved. So in the above example, substituting x for t
and s, we have to verify:

{ a: x, b: x → Integer }
≤ { a: x, b: x → Integer, c: x → Real }

which is obviously true for all types x.

Recursive types

A remaining subtlety is that the condition might depend on the original rule
that we wish to prove, which is acceptable, since we are only attempting to prove
the consistency of the subtype relationship. This is similar to what was seen before
in the definition of subtype rule 8 for recursive type-functions, and will only be
needed when type-functions are used with existential quantification, since this is the
only way that recursive types can be introduced. This is not a problem, but care
must be taken to avoid unbounded recursion when this occurs. For example
consider the subtype test:

typefn A[x] = T × x × (∃ y . A[y])
type A = ∃ z . A[z]

and
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typefn B[x] = S × x × (∃ y . B[y])
type B = ∃ z . B[z]

prove A ≤ B.

It is clear that A ≤ B if, and only if, T ≤ S and A ≤ B, and so the subtype
relationship is self-consistent. This means that the final, and most general, version
of the subtype rule is:

∃ a . Ψ(a) ≤ ∃ b . Ω(b)

if, and only if
for all t ε Types . Ψ(t) ≤ Ω(t)

given ∃ m . Ψ(m) ≤ ∃ n . Ω(n)

Other subtype rules

Other subtype rules are suggested by this, and it might be possible for a
system to also allow these. In particular the subtype can impose more structure on
the existential value, viz:

∃ a . Ψ(Φ(a)) ≤ ∃ b . Ω(b)

if, and only if
for all t ε Types . Ψ(t) ≤ Ω(t)

Verifying this subtype relationship would be substantially more difficult, since the
structure of Φ must be discovered. It is possible that future systems might allow
the programmer to supply directions to the type checker, so that it does not have to
discover a proof, but can simply verify that the programmer’s proof is correct. This
could allow significantly more general type systems, and might be required in this
case. However since these extended subtype rules are not required by the
techniques for the construction of objects that follow, this will not be pursued
further.

4 . 3  Defining Objects

The previous chapter showed that the contra-variance in the subtype
relationship for function types makes the construction of objects difficult. This
becomes apparent in the ‘obvious’ construction technique for objects, which is to
give an object a type of the form:

o × (m1: o → r1, m2:...)

Here o is the type of the representation of the object, and is paired with a structure
that contains the functions implementing the methods. Tw o classes of this form
might be:
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type A = o × (m1: o → r1)
type B = p × (m1: p → s1, m2: (p×b2) → s2)

Now if p ≤ o and r1 ≤ s1, we would like B ≤ A, since B only provides more
behaviour than A. However closer examination reveils that B ≤/ A because

p → s1 ≤ o → r1

requires that p ≥ o.

However we could use existential types to hide the representation of objects.
This is highly desirable since the objects as defined above allow unlimited access to
their representation, and so do not provide the encapsulation that is normally
expected of objects. We now hav e:

type A = ∃ o . o × (m1: o → r1)
type B = ∃ p . p × (m1: p → s1, m2: (p×b2) → s2)

and we see that B ≤ A if:

for all types t,
t × (m1: t → r1)

≤ t × (m1: t → s1, m2: (t×b2) → s2)

i.e. if (by Subtype Rule 5 and t ≤ t)

for all types t,
(m1: t → r1)

≤ (m1: t → s1, m2: (t×b2) → s2)

i.e. if (by Subtype Rule 3)

for all types t,
t → r1 ≤ t → s1

i.e. if (by Subtype Rule 4)

for all types t,
t ≤ t

and r1 ≤ s1

Now the contra-variance of the function parameters does not affect the subtype
computation at all. The subtype can introduce new methods, and so long as the
common methods’ return types are subtypes, the objects’ types will also be
subtypes.

If we have an object, a say, whose type is (possibly a subtype of) A, then we
can invoke the m1 message after first opening the object, viz:
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open a as x[z]
in

let (rep, mt) = x
in

mt.m1(rep)
end

end

(The let-clause uses pattern matching to take the value x apart conveniently.)

This formulation of objects makes them representation independent.
Previously the representation used by the subtype had to be a subtype of the
representation of the supertype, but now arbitrary representations can be used, since
once they are hidden behind an existential type they are not distinguishable. This is
similar to what can be achieved by storing the object’s state in non-local variables
accessed through the closures of the functions that are the object’s methods, as is
described in the previous chapters. However this approach requires much less
space, since the member functions’ closures can be shared by all instances of a
class, as the closures do not contain any object-specific state.

This representation independence gives the implementor of a class much more
freedom since it is only necessary for the subclass to be a subtype of the
appropriate superclass, and it is not necessary for it to inherit the implementation or
have the same instance variables. In particular the subclass might require much less
state than the superclass, since it might not require such general-purpose data
structures. An example of this would be a class for rectangles with horizontal and
vertical sides, which would only require two points as instance variables, but which
it might be convenient to make a subtype of general quadrilateral and polygon
classes.

Of course in practice many classes will be defined by extending an existing
class in the traditional way, adding new methods, and overriding some of the
existing methods. But while systems like Smalltalk-8033 and C++27 require classes
to be constructed in this way, this scheme allows it as one of many possibilities.
This is the separation of type and implementation inheritance that is discussed by
Snyder.16

However one problem remains with this scheme for constructing objects. This
is that the methods receive the object’s representation as a parameter, but not the
structure containing the methods. This means that the method cannot send messages
to self (the current object), going through the normal dynamic binding mechanism
that would allow a method defined in an inherited class to invoke a method defined
by the subclass. The normal approach to this is to make the entire object a
parameter to the methods, as shown in the recursive type declaration

type A = ∃ o . o × (m1: (o × Integer × A) → r1,
m2: (o × Integer) → r2)

where we see method m1 taking the whole object as its third parameter. This gives
it access to the function that is present in the object in the m2 field, which might be
the function that was defined at the same time as m1, but could alternatively be an
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overriding function from a subclass. If we now look at a subtype of this

type B = ∃ o . o × (m1: (o × Integer × A) → s1,
m2: (o × Integer) → s2,...)

we see that the parameter of the method must still have type A, rather than the new
type B. This is unfortunate, since it means that new classes cannot make use of
more behaviour from their subclasses than they were declared with in the original
class.

Any attempt to substitute B instead of A here, reintroduces the previous
problems caused by the contra-variance of function parameter types. This means
that the dependence of a method on other methods that may be redefined would
have to be declared when the method is first given a type. In practice this is too
restrictive and an alternative is needed. In the previous chapter we saw how
updatable values could be used to construct the recursive data structures that include
a self field. The subtype relationship on existential types allows this to be used
here also, and we shall see this used in the next section.

In these types the method m1 was also given the concrete representation of the
object’s state as a parameter. This might appear to be unnecessary, since the whole
object is the third parameter, but the method cannot access the state using this, since
the recursion in the type occurs outside the introduction of the existential type
hiding the state. That is, the existentials in the recursive uses of the type are not
the same as those used directly.

This can be seen more clearly if the recursion of the type is introduced
explicitly — this will be done using the ‘‘paradoxical’’ Y-combinator, to construct
the least fixed point of a type function. Using this notation, the previous definition
of A becomes

type A = Y[ λ x . ∃ o . o × (m1: (o × Integer × x) → r1,
m2: (o × Integer) → r2) ]

and it is obvious that each application of the type function introduces a new
existential type. However the type

type A = ∃ o . Y[ λ x . o × (m1: (o × Integer × x) → r1,
m2: (o × Integer) → r2) ]

uses the same existential type throughout. Now the first parameter of m1 is
redundant, and can be removed, since its third parameter’s concrete representation is
known.

Previously any object with the correct type could have been given as the third
parameter of m1, but now the value must have the same existential type as the
object in which the method was found, which can only be satisfied by using the
receiving object.
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4 . 4  Example Classes

We shall use the same example classes as in previous chapters so that the
different techniques may be compared more easily. As stated in the previous section
this technique does not require that a class is constructed by inheriting from classes
that are its supertypes, however this is what will be shown since this is a common
situation that we wish to adequately support — especially if we are attempting to
emulate the techniques of other object-oriented systems.

First we present the simple Accumulator class.

1:typefn A(x) = {

2: add: x × Integer → (),

3: total: x → Integer,

4: image: x → String

5: };

6:type Accumulator = ∃ t . t × A(t);

7:type Arep = { value: Ref[Integer]};

8:type Aselfrep = { self: ChoiceRef[|_ => Accumulator]}

9: & Arep;

10:value mt_accumulator: A[Aselfrep] = {

11: add = fun(rep: Aselfrep, value: Integer)

12: rep.value := !rep.value + value,

13: total = fun(rep: Aselfrep)

14: !rep.value,

15: image = fun(rep: Aselfrep)

16: open !rep.self as me[z]

17: in

18: let (srep, sops) = me

19: in

20: itos(sops.total(srep))

21: end

22: end

23: };

24:value mk_accumulator: Integer → Arep =

25: fun(ivalue: Integer)

26: { value = ref ivalue};
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27:value make_accumulator: Integer → Accumulator =

28: fun(ivalue: Integer)

29: let cr: ChoiceRef[Accumulator => Accumulator] =

30: make_choice_ref();

31: and self = { self = Read_only(cr) } &

32: mk_accumulator(ivalue);

33: and res = pack[r = Aselfrep in r × A(r)]

34: (self, mt_accumulator);

35: in

36: cr := res;

37: res

38: end;

Program 4.1

Clients of this class come in two varieties, those that just create and
manipulate instances of it, and secondly those that are going to inherit its behaviour.
The first type of clients only need access to the object creation routine
make_accumulator, and knowledge of the type Accumulator.

An instance of any subtype of Accumulator can be put into the self
ChoiceRef, which allows a view of the same object that overrides some messages to
be inserted. When instances are created the correct value for self is inserted on line
36, so that obtaining the contents of a self field, as occurs on line 16, should never
fail in any well-formed program.

Classes that inherit the behaviour will use mk_accumulator and the
message table mt_accumulator. We shall see this in the definition of
Scaled_accumulator which behaves like Accumulator, but scales the total
by a given amount:

1:typefn SA(x) = {

2: add: x × Integer → (),

3: total: x → Integer,

4: image: x → String,

5: set_scale: x → ()

6: };

7:type Scaled_Acc = ∃ t . t × SA(t);

8:type SArep = Arep & { scale: Ref[Integer] };

9:type SAselfrep = { self: ChoiceRef[|_ => Scaled_Acc]}

10: & SArep;

11:value mt_scaled_accumulator: SA[SAselfrep] = {

12: add = mt_accumulator.add,

13: total = fun(rep: SAselfrep)

14: !rep.scale × mt_accumulator.total(rep),

15: image = mt_accumulator.image,

16: set_scale = fun(rep: SAselfrep, ns: Integer)

17: rep.scale := ns

18: };
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19:value mk_scaled_accumulator: () → SArep =

20: fun()

21: mk_accumulator(0) & { scale = ref 1};

22:value make_scaled_accumulator: () → Scaled_Acc =

23: fun()

24: let cr: ChoiceRef[Scaled_Acc => Scaled_Acc]

25: = make_choice_ref();

26: and self = { self = Read_only(cr) } &

27: mk_scaled_accumulator();

28: and res = pack[r = SAselfrep in r × SA(r)]

29: (self, mt_scaled_accumulator);

30: in

31: cr := res;

32: res

33: end;

Program 4.2

This requires some explanation, and in the absence of language
implementations, careful justification. First note that

Scaled_Acc ≤ Accumulator

since A is a prefix of SA. This implies that

SAselfrep ≤ Aselfrep

as ChoiceRef is co-variant in its result type, and Arep is a prefix of SArep.
However type functions are, both in general and in this example, non-monotonic, so
that:

SA[SAselfrep] ≤/ A[Aselfrep]

This means that the subtype relationship between the results returned by
make_accumulator and make_scaled_accumulator is not established
until the representation has been hidden behind the existential quantifications, by the
coercions in lines 33 and 28, respectively.

In contrast the inherited methods in the message table for the add and image
messages have types that are subtypes of the types required for these methods. For
example the type of mt_accumulator.add:

Aselfrep × Integer → ()
≤ SAselfrep × Integer → ()

since

Aselfrep ≥ SAselfrep

So that their uses on lines 12 and 15 are type-correct.
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One potential problem with this is that the implementation of a class is visible
in classes which inherit it. This might be considered undesirable,16 but is similar to
the encapsulation provided by Smalltalk-80 classes. However it is possible, with
some reorganisation of these definitions, for the inherited state to be hidden behind
an existential type, so that the implementation of a class is only visible at the point
of its definition.

4 . 5  The Cost of Objects

So what have we gained by using existentially quantified types in our
definitions of objects? The principle advantage, and indeed the motivation of this
approach is that the cost of providing objects is now similar to the costs incurred in
systems that provide objects as primitive constructs. The principle saving is that
most of the overhead of an object can now be shared amongst all the instances of
the class. The approaches of both previous chapters required the instance variables
of an object to be stored in the non-locals of the functions that implemented
methods. This was used both to provide the encapsulation of objects, and also to
remove the requirement for a subtype relationship between records of instance
variables. However the result was that the storage requirement of an object was
roughly proportional to i × m, where i is the number of instance variables, and m
the number of methods.† In chapter 2 it was also necessary to construct type-
coercion operators for all the superclasses of an object, this could use considerable
extra space, again for every instance.

In contrast the storage requirements of programs 4.1 and 4.2 are i + 2 words
per-object. One overhead word being needed for the ChoiceRef containing the self
reference, and one for the reference to the message table. The message table itself,
and all the functions making up the methods of the object can be shared by all
instances of the class, and do not contain any extravagant data structures. This
compares favourably with the cost of objects in C++, and Smalltalk-80, both of
which require i + 1 words per object.

Sending a message to an object defined using this technique is actually more
expensive than using the previous approaches, since at least one extra dereference is
needed to get to the method, and the representation must be given as a parameter.
However neither of these extra operations are very expensive. On the other hand,
the creation of objects is much cheaper, since the object creation process is simpler,
and much less memory must be allocated and initialized. This also means that the
system will create less garbage, and so place less strain on the memory system.

4 . 6  Multiple Inheritance

Existential types can also be used to decrease the cost of objects constructed
using type-coercion as described in chapter 2. This is useful if the type system
does not allow the subtype relationship discussed in the previous sections. It can
also be used to allow an eff icient implementation of multiple-inheritance.

† The actual cost is much more complicated, since many methods only refer to a small number of
instance variables, and there are overridden methods which still require storage.
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Type-coercion involves actively converting an object to an instance of its
supertype, but the run-time cost of these conversions is usually much less than that
required for the run-time mapping of structure field names, to data positions that is
implied by changing the subtype rule. Consider three classes:

type A = ∃ o . o × (m1: o → r1)
type B = ∃ p . p × (m2: p → r2, m3: (p×...) → r3)
type C = ∃ q . q × (m4: q → r4, to_A: q → A, to_B: q → B)

where C is intended to be a subtype of both A and B. Using type-coercion this
means that operators coercing an instance of C into an instance of A and B must be
provided — here they are called to_A and to_B. It would be reasonable to expect
that an instance of C would contain within its representation instances of A and B
that would be returned by the type-coercion operators, but the results will often need
to include more state for use by overriding methods, and this might mean that other
methods require wrappers to access their instance variables. The self references in
these interior objects can be arranged to contain coerced versions of the enclosing
object, using the same techniques as before, so that overriding methods can be
accessed.

Again the cost of this is small. Each interior object must have its own self
reference, which means that there will be a self reference for every superclass,
rather than one which is shared by them all. However multiple-inheritance in
C++70 also requires this, so the overhead is not unreasonable. As before all other
data structures are part of the class, and so are shared by all the instances of the
class.

In fact this implementation of multiple-inheritance is very similar to that in
C++. In C++ when a message is found by indexing the message table, an offset is
also obtained which is added to the pointer to the receiving object before it is given
as the parameter to the method. This means that the method’s pointer to self is
actually referencing the instance variables inherited from the parent within the
object, rather than the object itself. The execution of the type-coercion operators is
achieving the same effect as the addition of this offset, and it would be possible to
package this up in the message table in the same way. Such type-coercions could
be inserted automatically by the system, or left explicitly to the programmer, if
desired.

An alternative implementation of multiple inheritance would be to use subtype
rule 3 to allow the re-ordering of the fields in subtypes, and using existential types
for objects’ types. However this is not just much less efficient, but does not allow
the hiding of inherited instance variables behind an existential type, because the
field names must be visible for the subtype relationship to be verifiable.

4 . 7  Conclusions

A new subtype rule has been proposed that relates the types of type
expressions using existential quantification, and it has been shown how this can be
used to construct classes and objects. Objects constructed in this way use much less
storage than was required for previous techniques, to the extent that it would appear
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to be feasible to use objects defined in this way in practical systems, rather than
their use being limited to purely theoretical interest.

Many of the types constructed are recursive, with the recursion being hidden
behind an existential type, rather than being explicitly introduced. As such, the
existential types often take the rôle of ‘‘like Current’’ in Eiffel, but since they
do not have their own ad hoc type rules, cannot introduce similar type
insecurities.85

Using a technique such as this, rather than providing objects as primitives in
the system, is less committed to any one particular view of objects. This is
particularly important for systems such as Ten15,64 which are intended to be a
target system for many languages, some of which might have conflicting definitions
of objects. It also means that the programmer is not limited to the definition of
objects provided by any particular language, but can choose techniques that are
appropriate for the task at hand.

More generally these three chapters have demonstrated how more expressive
type systems can allow more efficient implementations of objects to be used. This
is not a surprising result, but the fact that strongly-typed languages can make it
impossible to use well-founded algorithms has often been ignored. Research on
type systems will hopefully continue to reduce the number of algorithms falling into
this category.
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Chapter 5

Active Deallocation of Objects

As an object oriented system executes, objects are created, and other objects
become redundant. Many languages require the programmer to deallocate each
object explicitly when it is no longer needed, but it is increasingly common for the
deallocation to be carried out automatically by the system, using garbage collection.8

This makes the programmer’s task easier and less error-prone, but is particularly
important if it should not be possible for the integrity of the system to be affected
by mistakes (or indeed, malicious actions) made by the programmer.

Objects are used to represent all kinds of data. Many correspond to structures
in other languages, but some present a resource, such as an open file or terminal, to
the rest of the system. Use of this resource is then achieved by sending messages
to the guardian-object, which can carry out arbitrary checks implementing access
rights, or to guarantee the integrity of the resource.

In this case, it may be important that a specific action occurs when the
resource is no longer needed. A typical action would be to deallocate the resource,
for example close a file, but could also involve more complex actions, such as
flushing buffered output or rewinding a magnetic tape. Since this deallocation
action is part of the object’s behaviour as an abstract data type, it should be
implemented by the object itself. Moreover, encapsulation usually prevents access
from outside the object to the data that would be needed for the deallocation. This
suggests that a method should be called to carry out this action. This chapter
introduces special methods, that will be called destroy methods to achieve this, and
discusses how they might be implemented.

Destructors in C++ are similar to destroy methods, as is the part of a block
following the ‘‘***’’ statement in PascalPlus.86 However, in these languages the
programmer must explicitly deallocate heap objects, so it is simple for the compiler
to arrange for the deallocation code to be executed immediately before deallocation.
Similarly, the compiler can arrange for their execution prior to exiting a block, to
deallocate stack allocated objects. The inner statement in Simula-6723 is more
general, but its implementation, (beyond the fact that reference counting was the
principle garbage collection technique) is not widely documented.

It is important that destroy messages be sent automatically, otherwise, the
programmer has to decide when the destroy message should be sent. A mistake
could result in a resource becoming both unreachable and unavailable for reuse, this
is particularly undesirable when the resource is scarce, such as a file descriptor or a
physical device. The other possibility is that the destroy message is sent while the
resource is still in use, which may cause future attempts to use the resource to fail.
Both of these scenarios are more important when we consider an object-oriented
system, which might run for an extended period, rather than simply an object-
oriented program.
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It can be argued that errors such as these are mistakes by the programmer and
can be fixed. However in large systems, particularly those in which multiple
processes share such resource objects, it can be impossible to determine statically
when an object becomes inaccessible. Determining accessibility dynamically
implies, in the worst case, that the programmer must write a garbage collector for
the resource, duplicating the garbage collector provided by the system, most likely
without access to the low-level primitives that it can use to manipulate references.
The presence of a garbage collector implies that it has already been decided that the
programmer should not be required to carry out this task, and so it is inconsistent to
require it for these special objects. Other language features, such as exceptions, can
further complicate matters.

5 . 1  Uses of Destroy Methods

A common example use of destroy methods is to manage resources external to
the object-oriented system. This is the situation referred to above, in which the
object represents something that cannot be garbage collected by the system.
Examples are file descriptors, devices, terminal windows, and operating system
resources.

Most such destroy methods explicitly return the resource, making it available
for future reuse, or cause the deallocation of data structures, that is, they do what a
garbage collector would do if it understood the resource. However, more
complicated actions may also be necessary, such as rewinding a magnetic tape,
flushing a buffer to a file, or restoring parts of a screen obscured by a deallocated
window object.

Another use of destroy methods is to allocate objects from a pool. When an
object becomes garbage, its destroy method can return it to a pool of free objects,
this creates a new reference to the object and it should not actually be deallocated.
This technique is particularly useful if the object’s current state is important, or if
recreating the object is difficult or expensive. Again, the more obvious examples
concern devices.

Consider, for example, a system with a collection of line printers. An object
is associated with each printer; these are created when the system is initialized and
might contain information about the corresponding physical printer. Another object
maintains a pool of free printers, each represented by its associated object. When a
request for a printer is received, it is allocated by deleting the associated object from
the pool and returning it to the requester. When the associated object becomes
unreachable, the allocator is informed by the execution of a destroy method for the
object. Instead of allowing deallocation to proceed, it returns the associated object
to the pool. Many operating systems implement similar allocators via special
purpose code that provides the function of a destroy method for a specific kind of
object, such as a file descriptor. Incorporating destroy methods in a language
provides a similar function in a more general setting.

An important use of destroy methods is in building object-oriented interfaces
to systems implemented in procedural languages. When a system is composed of
parts written in an object-oriented language and (possibly pre-existing) parts written
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in procedural languages — particularly those without garbage collection — it will
often be necessary for garbage collection of objects to cause other-language data
structures to be explicitly deallocated or returned to a pool. These are actually the
same problems described previously, but occur in different situations not necessarily
involving physical resources.

This embedding of code written in traditional languages in objects, so that it
can be used as if it had been written in the object-oriented language, has been
called gift wrapping, and is a good way of making existing libraries available to
users of object-oriented languages.

For example, the object-oriented language AML/X87 was used in the Tiered
Geometric Modelling System (or TGMS),88 to provide an object-oriented interface to
GDP — a solid modelling system written in PL/1.89 TGMS provides a class called
solid. An instance of solid corresponds to a polyhedron data structure in GDP.
TGMS programs often create instances of solids, and hence of GDP polyhedron data
structures, as intermediate results. Destroy methods are used to explicitly deallocate
the GDP data structure and remove the polyhedron from the graphics screen when
an instance of solid is no longer accessible. This use of destroy methods relieves
the TGMS programmer from having to manage GDP storage and the display of
intermediate results.

Of course not all objects in a system will require a destroy method, in the
following discussion an ‘‘object with a destroy method’’ will be called an OWDM.
To be most useful, destroy methods should have the following properties:

Property 1

Each time the last reference to an OWDM (other than from the stack frame of
the object’s destroy method) is removed, its destroy method should be called exactly
once before continuing the computation that deleted the last reference.

Note that this prevents the destroy method from being called recursively on the
same object because the destroy method has an implicit reference to the object (i.e,
self). However, it does allow the destroy method to be called more than once
during an object’s lifetime, as occurs when allocating objects from a pool.

Property 2

A destroy method should be able to do any operation that is possible in an
ordinary method. Specifically, the destroy method should be able to create new
objects and to send messages to objects to which it has references, including self.
By Property 1, such objects will not have had their own destroy methods invoked
because references to them still exist.

Property 3

The presence of destroy methods should not increase the running time of other
methods, for example, other methods should not have to determine if they are
creating new references to an object, since this places an additional overhead on the
system regardless of whether a destroy method is executing.
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Property 4

The implementation should be safe, that is, it should not be possible to obtain
a reference to an object that has been deallocated or to an object whose destroy
method has executed, unless the destroy method created a new reference.

It is particularly difficult to satisfy this if destroy methods are invoked on
objects in disconnected, self-referential groups, as might result from cycles. This is
difficult because the execution of the destroy methods for two (or more) objects may
be mutually dependent on the state of the other object(s).

5 . 2  Implementing Destroy Methods

The implementation of destroy methods depends on the garbage collection
algorithm employed by the underlying language implementation. A particularly
simple implementation is possible when reference counting is used. An
implementation will also be presented using mark-scan garbage collection, this
solution is less satisfactory for a variety of reasons. Implementations using other
garbage collection algorithms, such as multiple-space, real-time algorithms90, 91 or
generation scavenging92 should be possible, but have not been investigated in detail,
particularly given the alternative techniques that are presented in the next chapter.
Parallel garbage collectors93 present additional problems.

5 . 2 . 1  Reference Counting Garbage Collection

Traditional reference counting associates a reference count with each object,
which is incremented each time a new reference to the object is created. Whenever
a reference is destroyed, the count is decremented. When it becomes zero, no other
references to the object can exist, so the object is deallocated. This is shown in the
following function, using the C programming Language:

1:decrease_refs_to(object)

2:object_ptr object;

3:{

4: object->reference_count--;

5: if(object->reference_count == 0) {

6: for(j in objects referenced by object)

7: decrease_refs_to(j);

8: deallocate(object);

9: }

10:}

Program 5.1

This function can be modified to call the object’s destroy method, as follows:
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1:decrease_refs_to(object)

2:object_ptr object;

3:{

4: object->reference_count--;

5: if(object->reference_count == 0) {

6: if(has_destroy_method(object)) {

7: object->reference_count++;

8: call_destroy_method(object);

9: object->reference_count--;

10:

11: if(object->reference_count == 0) {

12: for(j in objects referenced by object)

13: decrease_refs_to(j);

14: deallocate(object);

15: }

16: } else {

17: for(j in objects referenced by object) {

18: decrease_refs_to(j);

19: deallocate(object);

20: }

21: }

22:}

Program 5.2

The second test of the count is needed because new references to the object may
have been created during execution of the destroy method by the assignment or
passing of self. Property 1 is assured because each time the last reference is
removed, the count goes to zero and the destroy method is called. Incrementing the
reference count before calling the destroy method prevents recursive calls of the
destroy method, which would otherwise occur when references from the destroy
method’s stack frame (e.g. self) are deleted, or when other references created
during execution of the destroy method are deleted.

The additional cost for objects not having destroy methods is the cost of the
has_destroy_method test. In a strongly typed language, this might be done at
compile time; otherwise, it is the cost of one method look-up, or the space for a
has_destroy_method flag bit and the time to check it.

As with normal reference count garbage collection, groups of objects with
circular references will not be identified as garbage and any destroy methods
associated with the objects will not be called. Likewise, if reference counts are
allowed to saturate,33 an object’s destroy method will not be called unless the
system uses a non-reference counting garbage collector to reclaim saturated objects;
in this case, the call to the destroy method may be delayed, as described below. In
other respects, the algorithm satisfies the properties given above.

Variations on reference counting, such as deferred reference counting,34 are
changed in a similar way. Howev er, destroy methods will not be called until the
next garbage collection occurs. Any algorithm in which garbage collection takes
place as a separate phase of execution requires that Property 1 be replaced by:



- 98 -

Property 1a

Each time the last reference to an OWDM (other than from the stack frame of
the object’s destroy method) is removed, its destroy method must eventually be
called exactly once.

Unlike Property 1, Property 1a allows the destroy method to be executed in
the next garbage collection, which may be some considerable time after the last
reference to the object is destroyed. Even so, Property 1a is difficult to achieve
when separate execution and garbage collection phases exist. Consider an object
whose destroy method is called in a garbage collection. Three possible situations
may follow: no new references to the object are created; a new reference is created,
but is destroyed before the next garbage collection; and a new reference is created,
and still exists at the next garbage collection. The next garbage collection cannot
distinguish between the first two possibilities, but the first possibility should cause
the object to be deallocated, whereas the second and third possibilities should both
cause the destroy method to be called again. The next section introduces a
primitive operation that allows the programmer to resolve this ambiguity.

5 . 2 . 2  Mark-scan Garbage Collection

Mark-scan, which is one of the oldest forms of garbage collection, usually
takes a lower total amount of CPU time than reference counting, since it does not
require action on every reference operation. However, since all useful computation
is suspended during garbage collection, it can cause long pauses in the execution of
the system. Mark-scan is often used as a secondary garbage collection algorithm by
systems that use reference counting to obtain predictable real-time performance, but
need another algorithm to collect self-referential structures.

Mark-scan garbage collection consists of two phases. First, all reachable
objects are traversed starting from all the references in the interpreter (or some other
system roots). A mark bit is associated with each object in the system, and is set
on each object reached during the traversal, indicating that the object is reachable.
In the second phase, every object is visited, and all unmarked objects are
deallocated:

1:for(i in system roots)

2: mark_from(i);

3:mark_from(o)

4:object_ptr o;

5:{

6: if(not_marked(o)) {

7: set_mark(o);

8: for(j in objects referenced by o)

9: mark_from(j);

10: }

11:}

Program 5.3: Mark Phase
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1:for(i in all allocated objects) {

2: if(not_marked(i))

3: deallocate(i);

4: reset_mark(i);

5:}

Program 5.4: Scan Phase

Note that the scan phase resets the mark bit on all reachable objects, leaving the
system ready for the next garbage collection. All objects are created with the bit
reset, so that it is never necessary to scan all the objects to initialize the mark bits.

An important difference between mark-scan garbage collection and reference
counting is that in mark-scan the roots of a group of objects (e.g. a tree) are not
identified, whereas reference counting always processes the roots first. This
becomes important with the introduction of destroy methods because the order in
which the destroy methods are called may be significant. Suppose there is an
OWDM a that refers to an OWDM b. If destroy methods are called in other than
root-first order, the destroy method for a could attempt an operation on b after b’s
destroy method has executed. Thus, the operation might attempt to use object b
when it is in an inconsistent state.

If the group of objects includes a cycle of more than one OWDM, there is no
a priori correct order in which to execute the destroy methods. In fact there might
not be an order which does not cause a destroy method to use an object whose
destroy method has already executed — thus contravening Property 4. This is not
an issue with reference count garbage collection because it does not identify such
object groups as garbage. However if the objects are ever to be collected the cycle
must be broken in some way. One rather ad hoc solution, is to introduce the
following additional property dealing explicitly with cycles, and to note, with some
distaste, that it can cause the violation of Property 4:

Property 6

If an object a is unreachable from the system roots, but is reachable from
another object b (also unreachable from the system roots), then a’s destroy method
will be called only if b’s destroy method has already been called or if b is also
reachable from a. In the later case, the destroy method will be called for one
object in the cycle containing a and b.

The mark-scan garbage collection algorithm can be modified to call destroy
methods in the correct order. Besides the mark bit, two additional flag bits are
needed. One of them, called the destroy bit (D), is set when it is determined that
the object’s destroy method must be, or has been called. This bit is only needed in
objects that have destroy methods, but for simplicity we shall assume that it is
defined for all objects. The other bit, called colour (C), identifies objects that are
reachable from objects whose destroy methods are to be called. All objects are
created with all three bits set to zero. The modified algorithm also requires a
mechanism for enumerating OWDMs. This can be efficiently achieved by chaining
all such objects together in a list. The space overhead of this is small because most
objects do not have destroy methods.
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The modified mark-scan algorithm consists of fiv e phases, as follows:

1. Determine those objects that are reachable from the system roots.

2. Determine which OWDMs are not reachable from the system roots. These are
candidates for having their destroy methods invoked later in this garbage
collection. Such objects are called destroy candidates. Also, identify objects
reachable from destroy candidates, because such objects should not be
deallocated yet (Property 2).

3. Identify the destroy candidates that should not actually have their destroy
methods called because they may be used in the execution of another object’s
destroy method.

4. Scan all allocated objects, deallocating those that were not found to be
reachable in phases 1 and 2.

5. Call the destroy methods for each remaining destroy candidate.

Thus, phases 1 and 2 determine the objects that are garbage, and these are
deallocated in phase 4. Phases 2 and 3 find the objects whose destroy methods
should be called in phase 5.

The fiv e phases are described in more detail below. Figure 5.1 illustrates all
possible object states that can occur during garbage collection. The state of an
object is determined by a combination of its flag bits and the phase of the algorithm
that has completed execution. The ovals in each row represent all possible object
states between consecutive phases of the mark-scan garbage collection. States that
are not shown cannot occur.

Phase 1 — Mark

This phase marks all objects reachable from the system roots. The algorithm
is identical to the previous mark phase, except that the destroy bit is reset on all
reachable objects.

1:for(i in system roots)

2: mark_from(i);

3:mark_from(o)

4:object_ptr o;

5:{

6: reset_destroy(o);

7: if(not_marked(o)) {

8: set_mark(o);

9: for(j in objects referenced by o)

10: mark_from(j);

11: }

12:}

Program 5.5: Phase 1
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All objects enter this phase with their mark and colour bits set to zero. Only those
objects reachable from the system roots are marked; unreachable objects do not
change state. Note that D is set if and only if the destroy method was called in a
previous garbage collection, and the object remains unreachable from the system
roots.

Phase 2 — Identify candidates

Phase 2 finds destroy candidates and sets their destroy and colour bits.
Objects that have their destroy bit set prior to phase 2 are not destroy candidates
unless they are reachable from another destroy candidate (indicating that a new
reference to the object was created when its destroy methods executed during the
last garbage collection).
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Figure 5.1: Object State Transitions
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1:for(o in objects with destroy method)

2: if(not_marked(o)

3: &&not_destroy_bit_set(o)

4: &&not_coloured(o)) {

5: colour_from(o);

6: set_destroy(o);

7: }

8:colour_from(o)

9:object_ptr o;

10:{

11: if(not_coloured(o) && not_marked(o)) {

12: set_colour(o);

13: for(j in objects referenced by o)

14: colour_from(j);

15: }

16:}

Program 5.6: Phase 2

In addition, colour_from visits destroy candidates and all objects that are
reachable from them. These objects are coloured (C) to prevent them from being
deallocated in phase 4 (which is required by Property 2). There is no need to visit
objects that have already been coloured in this phase since such objects are
reachable from destroy candidates and therefore will no longer be destroy candidates
after phase 3.

Phase 3 — Prune

This phase ensures that Property 2 holds by identifying destroy candidates
whose destroy methods should not be called because they are reachable from other
destroy candidates. To do this it is necessary to visit all objects reachable from
destroy candidates, and reset their destroy bits. This traversal is limited by objects
that are marked, since, by definition, there can be no references back from a
reachable object to objects accessible only from objects to be destroyed. The mark
bits in the objects are used to restrict the recursion, as in the original mark phase,
but are restored as the recursion unwinds ready for the next traversal, namely:

1:for(i in objects with destroy method)

2: if(is_destroy_bit_set(i) && is_coloured(i))

3: reset_reachable_destroy_bits(i);
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4:reset_reachable_destroy_bits(o)

5:object_ptr o;

6:{

7: if(not_marked(o)) {

8: set_mark(o);

9: for(j in objects referenced by o)

10: if(not_marked(j) {

11: reset_destroy(j);

12: reset_reachable_destroy_bits(j);

13: }

14: reset_mark(o);

15: }

16:}

Program 5.7: Phase 3

Note that since this routine will traverse every path reachable from each destroy
candidate, some objects may be visited more than once.

In any cycle that contained one or more destroy candidates at the start of
phase 3, exactly one destroyable object (the first one encountered) will remain a
destroy candidate (i.e. have D set) after the execution of this phase has completed.

Phase 4 — Scan

Scan, and deallocate objects that are neither marked nor coloured:

1:for(i in all allocated objects) {

2: if(not_marked(i) && not_coloured(i))

3: deallocate(i);

4: reset_mark(i);

5: reset_colour(i);

6:}

Program 5.8: Phase 4

Note that this phase resets the mark and colour bits on all reachable objects, but
leaves the destroy bits intact. Objects that are unmarked but have the destroy bit set
are objects for which the destroy method was called in the last garbage collection,
and for which no new reference has been created. They are deallocated together
with other unreachable objects. Since the scan takes place before the destroy
methods are executed, the maximum amount of free space will be available for
objects that might be allocated by the destroy methods.

Phase 5 — Call

Call the destroy method on all allocated objects that have the destroy bit set:
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1:for(i in objects with destroy method)

2: if(is_destroy_bit_set(i))

3: call_destroy_method(i);

Program 5.9: Phase 5

As noted in the previous section, the memory system cannot always determine if an
object that has had its destroy method called, in the previous garbage collection,
should have it called again. As written, the destroy method will not be called again
unless the object is reachable from a destroy candidate or the system roots in at
least one garbage collection before it again becomes a destroy candidate.

This behaviour could be altered by a new primitive operation,
destroy_again, which could be made available for use in destroy methods.
Calling destroy_again would assert to the memory system that the object
should be eligible to have its destroy method called again. If this assertion is not
made, the object would cease to be regarded as having a destroy method, and its
lifetime would be determined strictly by its reachability from the system roots. This
could be implemented by a revised phase 5:

1:for(i in objects with destroy method)

2: if(is_destroy_bit_set(i)) {

3: call_destroy_method(i);

4: if(is_destroy_bit_set(i))

5: remove_destroy_method(i);

6: }

Program 5.10: Revised Phase 5

Lines 4 and 5 interact with destroy_again. Destroy_again resets the
destroy bit so that remove_destroy_method is not called, otherwise this
routine would remove the object from whatever data structures are used to
enumerate all OWDMs, thus removing it from consideration in future garbage
collections. Resetting the destroy bit guarantees that the destroy method would be
called in the next garbage collection if no references to the object are found.

Care should be taken if the execution of a destroy method results in another
(recursive) garbage collection. In particular, the destroy bits on all destroy
candidates not yet enumerated in phase 5 should be reset so that the invariants
expected at the completion of phase 5 hold.

A collection of objects with k layers of destroyable objects will be completely
deallocated in k+1 garbage collections. Each garbage collection identifies, and then
calls, the destroy methods of the least-referenced layer; an extra garbage collection
is then needed to deallocate normal objects which were only referenced by the last
layer of OWDMs.
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5 . 3  Examples of Deallocation

Consider the sequence of operations when the structure shown in Figure 5.2
becomes unreferenced.

A B C D
...

system roots

Figure 5.2

In all these diagrams, large boxes represent OWDMs and small boxes
represent other objects. The objects are referred to by labels in the top of the
boxes. Any of the garbage collection bits that are set in the object are represented
by the letters M, C and D at the bottom of the box.

When garbage collection begins, the objects have the states shown in figure
5.2. The mark phase (phase 1) follows the pointer from the system roots, setting
the mark bit on object D and all objects reachable from it. Phase 2 then colours all
objects reachable from A and C. Note that the result of this phase depends on the
order in which A and C are enumerated. Figure 5.3 shows the system state if A is
enumerated first,

A
CD

B
C

C
C

D
M

...

system roots

Figure 5.3
and figure 5.4 shows the system state if C is enumerated first.

A
CD

B
C

C
CD

D
M

...

system roots

Figure 5.4

Phase 3 then visits all the objects reachable from A and C. Regardless of the
order in which A and C are enumerated, the destroy bit in object C is reset in the
traversal starting at object A and the traversal starting at C has no effect. Both
traversals stop when object D is reached, since it is marked. The result, which is
independent of the enumeration order, leaves the destroy bit set only on object A.
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None of the objects shown are deallocated in the scan phase (phase 4) since
all the objects are either marked or coloured. Finally, the destroy method on object
A is called in phase 5. If destroy_again was called A’s destroy bit was reset,
and a similar sequence will occur in the next garbage collection. Otherwise no
further destroy methods are required for object A, and it becomes a normal object
for the next garbage collection. In this case, the destroy method on object C will
be called in the next garbage collection, unless A’s destroy method created new
references to B or C.

Now consider the more complex structure that includes a loop of references, in
figure 5.5.

A B C D

Figure 5.5

Again, the structure is shown before the mark phase. In this case, the mark
phase will not reach any of the objects shown, since there are no pointers into this
structure. Therefore, this is also the state before phase 2. Phase 2 visits and
colours A, B, D, and all the objects reachable from them (C in this case). Thus all
the objects shown will be coloured at the start of phase 3. Also, the destroy bits on
object A and, depending on the order in which destroyable objects are enumerated,
possibly one of B or D will be set.

Phase 3 resets the destroy bits on objects B and D. This occurs regardless of
the order in which destroyable objects are enumerated, because all unmarked objects
reachable from A are visited by reset_destroy_bits. Thus, none of the
objects shown is collected in the scan phase, and the destroy method defined on
object A is called in phase 5.

If A’s destroy method calls destroy_again the structure returns to its
initial state. Otherwise, at the next garbage collection the objects will be as shown
in Figure 5.6:

A
D

B C D

Figure 5.6

Notice that object A is now shown as a small object since it no longer has an
active destroy method — It will no longer occur in the enumeration of destroyable
objects.

In the next garbage collection, the mark phase again does not reach this
collection of objects. In phase 2, the objects reachable from objects B and D are
coloured, so that we obtain either Figure 5.7 or Figure 5.8 depending on the order
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of enumeration of destroyable objects.

A
D

B
CD

C
C

D
C

Figure 5.7

A
D

B
C

C
C

D
CD

Figure 5.8

In either case, phase 3 has no effect since only one object has its destroy bit set. In
the scan phase, object A will be deallocated since it is neither marked, not coloured,
and the colour bits are reset in the other objects. Thus, the destroy method on one
of object B or object D is executed in the last phase. The effect of phases 2 and 3
is to choose arbitrarily which of the destroy methods for the OWDMs in the cycle
will be called.

Since object A no longer exists both cases are equivalent, and we will assume
that the destroy method on object B is the one that is executed. Again there are
two possibilities, depending on whether or not the destroy methods calls
destroy_again. If it is not called, the state at the next garbage collection is as
shown in Figure 5.9.

B
D

C D

Figure 5.9

Again, this is unaffected by the mark phase. Phase 2 will colour all the objects
and set the destroy bit in object D. Phases 3 and 4 have no effect since all objects
are coloured. Thus, in phase 5, D’s destroy method will be called and it is able to
break the loop.

5 . 4  Program Termination

When a program terminates, all its storage becomes garbage. If the language
does not have destroy methods, there is no need to collect this storage because it
will be returned to the host operating system. The introduction of destroy methods
places additional meaning on the deallocation of objects and the destroy methods
associated with the objects should be invoked. Naturally, this would not be
appropriate if the objects existed in a persistent store,94 where the system roots exist
independently of the execution of any one program.
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With mark-scan garbage collection, it would probably be acceptable to execute
one or more iterations of garbage collection. This would not be as time consuming
as at other times, since the system roots will no longer contain valid references, and
so the mark phase is trivial. However it may need to be repeated several times,
until all objects have been deallocated.

It would be useful here for a parameter to be associated with destroy methods
to indicate if the garbage collection is due to a lack of free space, or program
termination. This would allow destroy methods that normally create new references
to their object to have a different behaviour at program termination. A decision
must be made about the behaviour of a system with objects that persistently re-
create references to themselves at program termination. If this is regarded as a
programmer error, the resulting infinite loop may be the correct behaviour.

Other categories, such as a stack-allocated object going out of scope, and
garbage collection explicitly invoked by the program may also be useful. In
systems with combined garbage collection algorithms, such as reference-counting
combined with mark-scan, the type of garbage collection causing a destroy method
to be invoked could also be useful information for the destroy method.

In systems that use reference counting, it would be very expensive to count
down the references from the system roots, since this potentially involves visiting all
objects in the system many times. Also, saturated reference counts, if they are
allowed, create objects that cannot be deallocated in this way. If mark-scan garbage
collection is also available, this would be more appropriate at program termination.

5 . 5  Experience

Destroy methods have been available in the language AML/X87 for some time,
where they hav e been found to be invaluable — especially in the construction of
TGMS. However, the existing implementation is not robust in the face of cycles of
destroyable objects, and the more complex actions that might be taken by destroy
methods. This originally prompted the development of the proposals presented here.

The semantics of destroy methods are much more complex than was originally
thought, and it is unfortunate that their exact behaviour depends on the garbage
collection algorithm employed, thus allowing implementation to intrude into
language semantics.

Experience has shown that very simple destroy methods predominate.
However, to simplify the algorithms significantly it is probably necessary to disallow
most accesses to instance variables and to self. This might still allow the use of
destroy methods to manage external resources, but would not allow managing a pool
of objects. Nevertheless, it should be possible for a compiler to conservatively
identify such safe destroy methods, which could then be implemented more simply
and efficiently.

Reference counting garbage collection gives a particularly simple way to
implement destroy methods. Mark-scan garbage collection presents more problems,
but an implementation is possible, albeit with some delay before unreferenced data
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is deallocated. The ability to enumerate all destroyable objects and two extra mark
bits on the objects are required.

It is unclear what the correct behaviour should be when one or more OWDMs
appear in a cycle. Perhaps this alone should suggest that a simpler type of destroy
method should be used, but the restrictions seem too great.

The next chapter describes an alternative technique that allows the programmer
to provide the effects of destroy methods using other, lower-level, primitives. This
overcomes most of the problems with the techniques of this chapter.
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Chapter 6

Weak Pointers

In the previous chapter it was shown that there are circumstances in which it
is very useful if an object can arrange to be warned of its impending deallocation.
This warning appeared as a message to the object from the garbage collector,
causing the invocation of a destroy method defined in the object. Modifications to
the well-known reference-counting and mark-scan garbage collection algorithms to
support destroy methods were described.

The modifications to reference-counting are simple, suffering only from
reference-counting’s inability to detect unreachable groups of objects containing
circular references. In contrast the modifications for mark-scan garbage collection
are very complex, and in the absence of a formal proof of the correctness of the
resulting algorithm it is difficult to feel confident of its correctness. Unfortunately
both these garbage collection algorithms have been replaced by more efficient
algorithms in most modern systems, and the modifications described give few hints
about ways in which many of these algorithms might also be modified to support
destroy methods.

Sometimes complex algorithms are caused by an inappropriate choice of the
primitive operations on which the algorithm is based. The primitives might be at
too high a level of abstraction, making the desired control difficult to obtain, or they
might be at too low a lev el, requiring the algorithm to deal with too many irrelevant
details. The purpose of this chapter is to demonstrate that the effect of destroy
methods can be provided quite simply, by using more appropriate low-level
primitives. These are more widely useful, and the entire resulting system is
significantly simpler, and hence easier to implement, more trust-worthy, and
hopefully also more efficient, than the schemes described before.

A further advantage is that fewer details of the underlying garbage collection
algorithm are made visible to the programmer in the definition of the destroy
method mechanisms. However some differences, such as those caused by the choice
of synchronous or asynchronous garbage collectors cannot be completely hidden.

Much of the code to control destroy methods is moved from the memory
system, into libraries which could be normal user code. This has obvious
advantages for the development and maintenance of both the destroy method code,
and the memory system.

The primitives used for this formulation of destroy methods, in order of
importance, are weak pointers, forwarding objects, and garbage collection
notification. There are several variations but weak pointers underly these as the
fundamental mechanism.
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6 . 1  The Primitives

Weak pointers

Weak pointers are references to objects that are ‘‘not strong enough’’ to stop
the object from being deallocated by a garbage collection. A weak pointer can be
created to refer to any object. This can later be firmed to obtain a new ‘normal’
reference to that object, provided that, in the intervening period, a garbage collection
did not occur which collected the object because at that time there were no ‘normal’
references to it. If the object has been collected, any attempt to firm the weak
pointer will produce an exceptional value, say nil, raise an exception, or signal its
failure in some other way appropriate in the language being used.

It is important that a weak pointer must be firmed explicitly before the object
to which it refers can be used, since this is when a new ‘normal’ reference to the
object is created, and also when the previous collection of the object might become
apparent and require special action by the user program. The dereferencing
operation must be indivisible — in particular it must not be interrupted by a garbage
collection.

Weak pointers are not new, being available in the T system,95 on the Flex
machine,96 where they are called shaky pointers, and elsewhere. Some of the uses
that are made of weak pointers in these systems will be discussed later.

Pointers that are weaker even than weak pointers might be proposed. These
pointers would be cleared by any garbage collection, regardless of whether the
object to which they refer has been deallocated or not, however these do not seem
to be sufficiently useful to justify their inclusion in a system, despite their simpler
implementation.

Forwarding Objects

Forwarding objects are simply objects that achieve their behaviour by
forwarding all the messages that they receive, to another object, and then returning
the result from that object. They represent indirect references to objects. Similar
constructs have been used in Smalltalk-80 to provide transparent access to objects
on other systems over a network,97 here the forwarding can be achieved by an
arbitrarily complex action — a remote procedure call in this case. Transparent
forwarding objects which do no processing of forwarded messages have not
previously been seen to be useful, since if they are transparent, why hav e them there
at all? Here we provide an example of their utility.

Forwarding objects are not strictly necessary as primitives of the system, as
will be shown later, but the abstraction is useful, and simplifies the description of
the implementation of destroy methods.
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Garbage collection notification

Garbage collection notification is the simplest primitive of all, we simply
require a mechanism that allows routines provided by the user, to discover when a
garbage collection has occurred. There are several different ways in which this
might be achieved, ranging from a semaphore signaled by the garbage collector, to a
list of functions that are to be called automatically after each garbage collection is
completed.

6 . 2  Implementing Destroy Methods

In its simplest form (some variations will be discussed later) destroy methods
are implemented by a library which interacts in a simple way with the memory
system using weak pointers. The library maintains a list with one element for each
object in the system that has a destroy method. As before these objects will be
called OWDMs, and this list will be called the destroy list. Each element of the
destroy list contains a normal pointer to the OWDM, and a weak pointer to a
forwarding object to the OWDM. It is arranged that no other normal pointers to the
OWDM exist in the system, instead all other references are to the forwarding object,
but since forwarding is transparent this is not visible to the rest of the system. Thus
the destroy list has the following structure, where weak pointers are represented by
dashed arrows:

Destroy list

Pointers from system

Forwarding
Object

Object
with

destroy
method

rest of Destroy list...

Figure 6.1: An Element of the Destroy List

After each garbage collection the destroy list is traversed and each weak
pointer is tested to see if it has been cleared. This would imply that the forwarding
object has been garbage collected, because there are no references to it from the rest
of the system. But as far as the rest of the system is concerned the forwarding
object is the OWDM, and so this tells us that the destroy method in the OWDM
should be called.

When an OWDM is created it must be inserted into the destroy list by calling
a routine from the destroy method library, which will be called
‘‘make_destroyable’’. This routine creates a forwarding object, updates the
destroy list, and returns the forwarding object as its result. It is important that a
reference to the forwarding object is returned by the OWDM’s creation routine,
rather than a reference to the OWDM itself, since we are relying on all references
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to the object being via its forwarding object to determine when it becomes
unreachable.

Similarly methods in the OWDM should not export references to self, but
should use references to the forwarding object instead. A library routine
get_forwarding_object will obtain a reference to the forwarding object
which can be used in these situations. If this carries too high an overhead an
OWDM could remember, in an instance variable a weak pointer to its forwarding
object, which can be firmed each time a pointer to self is required. Obviously the
object must not remember a normal pointer to its forwarding object!

While this complicates the definition of OWDMs, it is important to note that
the rest of the system is not aware if any particular object is an OWDM or not, so
that the notational cost is limited to the objects requiring the additional functionality
of destroy methods.

When the library calls a destroy method in an OWDM, it is removed from the
destroy list, and so will be collected by the next garbage collection. However it is
possible for the destroy method to call make_destroyable again so that a new
entry is made for the object in the destroy list, and its destroy method will be called
once more before the object can be deallocated. Of course a reference to a
forwarding object which is returned by make_destroyable can be given to
other objects by the destroy method, which is how an OWDM would return itself to
a pool of free objects, as was described previously.

Here care must be taken that the insertion of this new element into the destroy
list does not conflict with the traversal of the list which is currently taking place by
the library. This can be achieved by creating all new destroy list elements on a
second list which is appended to the destroy list when its traversal finishes.
Similarly the insertion of a new element into the destroy list must be indivisible, so
that it cannot be interrupted by a garbage collection which then causes the library to
start a traversal.

6 . 2 . 1  Variations on the Algorithm

The exact mechanism of garbage collection notification which causes the
execution of the destroy method library has not been described in detail, since there
are several alternatives depending on other properties of the system. The first, and
simplest approach is if the last action of the garbage collector is to call a user-
supplied routine — several systems, such as T, maintain a list of actions to be
carried out before, and after each garbage collection, and allow libraries to add their
own actions to these lists. This has several disadvantages, in particular the time a
garbage collection takes may be increased by possibly many arbitrary computations
in the destroy methods. This is probably unacceptable in systems that aim for
interactive response even in the presence of garbage collections.

More fundamentally garbage collection, and hence the execution of destroy
methods, occurs at an unpredictable point in the execution of the system so that care
must be taken if the destroy method interacts with other objects. Even in a system
that provides semaphores, or other concurrency control mechanisms, these are not
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useful in this situation, unless it can be guaranteed that the execution of destroy
methods cannot block (since this would, in effect block the garbage collector!), or a
sensible meaning of blocking can be provided. An ev en worse situation occurs if
the execution of a destroy method causes another garbage collection, since
concurrent access to the destroy list must then be allowed.

In a system that provides (pseudo-)concurrent processes many of these
problems can be addressed. In this type of system it is natural for the destroy
method library to define a process, rather than a routine, which discovers
unreachable OWDMs and executes their destroy methods. This process would
normally be blocked, but the last action of the garbage collector would be to make
it runnable, by signaling a semaphore, or calling a Unix-style wake-up routine. The
process traverses the destroy list, calling the relevant destroy methods, and then
loops back, blocking until another garbage collection occurs.

The cost added to garbage collection is now very small, as it only has to make
the destroy method process runnable. If the system allows priorities to be
associated with processes then the destroy process can be safely given a relatively
low priority — the user has little control over when destroy methods are executed,
since this depends on a garbage collection occurring, thus the extra delay caused by
executing destroy methods at a low priority should not be important. If the system
has some idle time this can be used to execute pending destroy methods, although
some care is needed that large numbers of such objects do not accumulate, since
their memory cannot be reclaimed until the destroy methods have been executed.
The previous routine-based solution always ran the destroy methods at a very high
(i.e. garbage collection) priority.

Now that we have a separate process, it is also possible for a destroy method
to use normal techniques to synchronise access to shared data structures. If the
destroy method process blocks while executing a destroy method, this might delay
the execution of other destroy methods, but is preferable to the previous situation.

Now a garbage collection occurring during the evaluation of a destroy method,
or before the destroy method process has completed its scan of the destroy list and
blocked again, does not require special handling since there is no possibility of the
destroy method routine being active more than once.

It is possible that the resetting of weak pointers for some objects will not be
discovered until the next garbage collection occurs at which the destroy method
process is blocked awaiting a garbage collection, since this is the only time at which
the destroy method process goes back to the start of the destroy list. This leads to
another variation in the algorithm, which removes the requirement for the garbage
collection notification primitive altogether! This is simply to have the destroy
method process never block, but simply always cycle through the destroy list at a
low priority.

In a system that provides very cheap processes another possibility exists; there
could be a destroy method process for every OWDM in the system! Instead of the
garbage collector calling the wake-up function on a global ‘‘there has been a
garbage collection’’ variable, it could wake-up processes waiting on variables
associated with each weak pointer that is cleared. This is more generally useful,
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and so is an obvious extension to the concept of weak pointers,98 it fixes the
problem of a destroy method sleeping to get access to a shared variable, and
delaying the evaluation of other destroy methods, but might incur a large cost in the
process scheduler, both from the large number of waiting processes that it might
cause, and also because (potentially) many processes could all become runnable at
the same time.

6 . 3  Weak Pointers

In the previous section we have seen how destroy methods can be conveniently
implemented using weak pointers. It remains to show that the implementation of
weak pointers themselves is feasible, and indeed much simpler than the
implementations of destroy methods in the previous chapter.

To recap, a weak pointer is a reference to an object that is ‘‘not strong
enough’’ to stop the object from being deallocated by garbage collection. A weak
pointer can be created to any object, and then later a ‘normal’ reference to the
object can be obtained, if the object has not been deallocated, by firming the weak
pointer. In a garbage collection an object’s storage is reclaimed if it is not
referenced by a normal pointer. Any weak pointers that reference an object that is
reclaimed are cleared so that future attempts to firm them will return a null pointer,
raise an exception, or signal the non-availability of the object in some other way
appropriate to the language.

No other operations are allowed on weak pointers — this limits the operations
which must interact with the memory system, and should not be interrupted by a
garbage collection. Successfully firming a weak pointer creates an ordinary
reference to the object, which will stop it from being collected in the normal way.

6 . 3 . 1  The Implementation of Weak Pointers

The implementation of weak pointers must be done with some cooperation
from the garbage collector. Unfortunately there are now a div erse range of garbage
collection techniques8 which cannot all be considered here. Instead algorithms will
be given for Mark-scan, and Fenichel-Yochelson semi-space99, 90, 100 garbage
collection algorithms, which are representative of many others. In both cases
recursive algorithms with be presented for simplicity, although both algorithms can
be re-cast into non-recursive versions that reverse the pointers they traverse so that
they do not need a stack, or other unbounded auxiliary storage.

The algorithms follow broadly the same scheme: a slightly modified version of
the underlying garbage collection algorithm, is followed by a pass through all the
weak pointers in the system giving them their correct value. The underlying
garbage collection algorithm must identify weak pointers, and processes them
differently from normal pointers.

The extra pass on each garbage collection should not be very expensive — the
work being proportional only to the number of weak pointers in the system. Weak
pointers are expected to form only a small proportion of all pointers since they are
relatively special-purpose. In some other cases it is possible to combine the extra
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pass with the last pass of a multi-pass garbage collection algorithm.

This requires that weak pointers are distinguishable from normal pointers and
scalar data. Many systems use tags to recognise pointers to objects, and it may be
possible for weak pointers to be given a special tag. However tags are usually a
very scarce resource, and it might not be desired to use a tag for this purpose,
especially if weak pointers are relatively uncommon. In the VAX Ten15 system64

weak pointers are given the same tag as normal pointers, but contain the negation of
the address of the object to which they refer. This is equivalent to using the sign
bit as a third tag bit in pointers, but has the advantage that the extra tag bit is not
needed in other data words.

An alternative that can be used when extra tags are not available, is to make
weak pointers objects in memory, effectively single-word records referenced by
normal pointers, which contain the address of the weakly referenced object, or Null.
Weak pointer objects are then given their own object type, so that the garbage
collector can identify the object as a weak pointer.† This is similar to the way that
‘Standard ML of New Jersey’ represents mutable variables (refs) as memory objects,
ev en though they could be represented by a single word.101

By making weak pointers into memory objects it becomes possible for them to
use more than one word of memory. In particular, if a weak pointer object is two
words long (plus whatever object header the system requires) the second word can
be used to keep a list of all the weak pointers in the system, so that they can be
conveniently enumerated by the garbage collector. This list must be treated
specially by the garbage collector, if it is not to keep weak pointer objects alive
which can only be reached from it. In fact we shall see that it is usually convenient
for the garbage collector to construct the list itself, the extra words not being valid
between garbage collections, and existing only so that the garbage collector does not
need to obtain storage to remember the list of weak pointers, the size of which
cannot be predicted beforehand.

6 . 3 . 2  Mark-Scan Garbage Collection

A Mark-Scan garbage collection involves making two passes through the
object memory. Each object has a single bit of memory associated with it (called
the mark bit) which is normally clear. In the first pass all reachable objects are
visited by recursively following all pointers reachable from the system root pointers.
Then in the second pass the whole of object memory is scanned (ie. every object is
visited). If an object is marked, its mark bit is reset ready for the next invocation
of the garbage collector, otherwise the object is unreachable and is reclaimed for
future re-use, normally by adding it to a free list. In a C-like pseudo-code this
becomes something like:

1:for(i in system roots)

2: mark_from(i);

† Most systems already distinguish several types of memory object, so that the garbage collector can
decide if the object might contain pointers to other objects, and how they might be arranged.
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3:mark_from(o)

4:object_pointer o;

5:{

6: if(not_marked(*o)) {

7: set_mark(*o);

8: for(j in object pointers in *o)

9: mark_from(j);

10: }

11:}

Program 6.1: Mark Phase

1:for(i in all allocated objects) {

2: if(not_marked(i))

3: deallocate(i);

4: reset_mark(i);

5:}

Program 6.2: Scan Phase

First we modify the meaning of ‘‘objects referenced by o’’ in mark_from to
exclude references from weak pointers, this ensures that an object is not marked if it
can only be reached by weak pointers. After the mark phase a new phase is added
which resets the weak pointers pointing to unmarked objects, viz:

1:for(w in all existing weak pointers) {

2: if(!is_clear(w) && not_marked(firm(w)))

3: clear(w);

4:}

Program 6.3: Weak-fixup phase

Note that null weak pointers may be left from previous garbage collections.

If we now assume that weak pointers are objects in memory we can modify
the mark phase so that the enumeration in the weak-fixup phase is trivial. A weak
pointer object is a structure of the form:

struct weak_pointer_object {
object_header hdr;
object_pointer weakp;
object_pointer next;

};

where object_header is the one-word field that occurs at the top of all memory
objects, and contains information for the garbage collector. This usually includes
the mark bit, the length of the object, and its kind, which might be POINTERS,
NO_POINTERS, or in this case WEAK_POINTER. Weakp contains the address of
the object to which the weak pointer refers, and next is used for the enumeration.
The first two garbage collection phases now become:
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1:object_pointer weak_list_head;

2:...

3:weak_list_head = Null;

4:for(i in system roots)

5: mark_from(i);

6:...

7:mark_from(o)

8:object_pointer o;

9:{

10: if(not_marked(o->hdr)) {

11: set_mark(&o->hdr);

12: switch(object_kind(o->hdr)) {

13: case POINTERS:

14: for(j in object pointers in *o)

15: mark_from(j);

16: break;

17: case NO_POINTERS:

18: break;

19: case WEAK_POINTER:

20: o->next = weak_head_list;

21: weak_head_list = o;

22: break;

23: ...

24: }

25:}

Program 6.4: Mark phase

1:for(w = weak_list_head; w != Null; w = w->next) {

2: if(w->weakp != Null && not_marked(w->weakp->hdr))

3: w->weakp = Null;

4:}

Program 6.5: Weak-fixup phase

This shows more detail than before, including a test to stop the scanning of
objects that are known not to contain object pointers; these might be things such as
strings, bitmaps, or arrays of numbers. The field next, used to make the list of
weak pointer objects, is neither accessible by the user program, nor valid between
garbage collections. The scan phase is unchanged by the addition of weak pointers.

6 . 3 . 3  Fenichel-Yochelson Semi-space Garbage Collection

A system using Fenichel and Yochelson’s copying garbage collection algorithm
divides the object memory into two semi-spaces, only one of which is used as the
system executes normally. New objects are allocated in the current semi-space until
insufficient space remains to satisfy an allocation. At this point all the reachable
objects in the current (old) space are copied into the other (new) space, the roles of
the spaces are then interchanged and the system continues to execute. This has
several advantages:
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• Most importantly, the work required is proportional to the amount of memory
in use at the time of the garbage collection, rather than the number of objects that
have been allocated (as is the case with mark-scan garbage collection).

• Only a single pass is made through the objects in the old space, and the new
space is written to sequentially, which usually gives better performance when virtual
memory is used.

• After a garbage collection all the live objects are collected together (ie. it is
compacting), this also gives better paging performance, and allows a simpler
allocation algorithm, where new objects are simply ‘‘carved off’’ the free memory
block, without the need for free lists, etc.101

The only complication required is to ensure that several pointers to the same
object, still point to the same object after a garbage collection. When an object is
copied into new-space, its header in old-space is changed to a forwarding pointer,†

and the address of the object in new-space is recorded in the old object. Whenever
the garbage collector follows a pointer it checks to see if it references a forwarding
pointer, and if so the address of the copy in new-space can be used directly.

The complete algorithm takes the following form. It is assumed for simplicity
that the forwarding address can be contained in the header together with the
indication that this is not a normal header.

1:Word *ffw; /* pointer to first free word */

2:...

3:ffw = base of new space;

4:for(i in system roots)

5: i = copy(i);

6:swap new and old spaces

7:...

† Not to be confused with the forwarding objects described in the next section. Forwarding pointers
are not visible to the programmer, and only exist while garbage collection is in progress.
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8:object_pointer copy(o)

9:object_pointer o;

10:{

11: Word *posn, *result;

12:

13: if(is_forwarded(o->hdr))

14: return get_forward(o->hdr);

15:

16: result = posn = ffw;

17: ffw += get_size(o->hdr);

18: switch(object_kind(o->hdr)) {

19: case POINTERS:

20: *posn++ = o->hdr;

21: for(j in object pointers in *o)

22: *posn++ = copy(j);

23: break;

24: case NO_POINTERS:

25: fast_copy(result, o);

26: break;

27: ...

28: }

29: o->hdr = forwarder_to(result);

30: return result;

31:}

Program 6.6

The fast_copy routine does not need to examine the words it copies into
new-space, since it is known that the object does not contain pointers.

The modifications to the mark phase of mark-scan garbage collection can be
used (almost without change) in copy, but we can do better — there is no need for
each weak pointer object to contain a spare word for the list of weak pointers to be
constructed! Instead we can use the fact that, after it has been copied to new-space,
a two-word object (now including the header) such as a weak pointer object is
actually represented by four words, two in new-space, and two in old-space.
However the old-space copy is only needed to forward other references to the weak
pointer, so the other field can be used to construct the list for the weak-fixup phase.

A weak pointer object is now represented by:

struct weak_pointer_object {
object_header hdr;
object_pointer weakp;

};

and the semi-space algorithm becomes:
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1:Word *ffw; /* pointer to first free word */

2:weak_pointer_object *weak_list_head;

3:...

4:ffw = base of new space;

5:weak_list_head = 0;

6:for(i in system roots)

7: i = copy(i);

8:/* Weak-fixup phase: */

9:for(i = weak_list_head; i != 0; i = i->weakp) {

10: object_pointer o = get_forward(i);

11: if(is_forwarded(o->weakp->hdr))

12: o->weakp = get_forward(o->weakp->hdr);

13: else

14: o->weakp = Null;

15:}

16:swap new and old spaces

17:object_pointer copy(o)

18:object_pointer o;

19:{

20: Word *posn, *result;

21:

22: if(is_forwarded(o->hdr))

23: return get_forward(o->hdr);

24:

25: result = posn = ffw;

26: ffw += get_size(o->hdr);

27: switch(object_kind(o->hdr)) {

28: case POINTERS:

29: *posn++ = o->hdr;

30: for(j in object pointers in *o)

31: *posn++ = copy(j);

32: break;

33: case NO_POINTERS:

34: fast_copy(result, o);

35: break;

36: case WEAK_POINTER:

37: *posn++ = o->hdr;

38: *posn++ = o->weakp;

39: o->weakp = weak_list_head;

40: weak_list_head = o;

41: break;

42: ...

43: }

44: o->hdr = forwarder_to(result);

45: return result;

46:}

Program 6.7
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6 . 3 . 4  Other uses of Weak Pointers

The T system95 provides weak pointers, as well as several other data structures
which provide weak versions of conventional sets, lists, associations, and tables (key
to value mappings). These could have been provided using weak pointers, by any
user of the system, but are available as part of the standard environment.

Weak pointers were also developed independently for the Flex system,102

where they are called shaky pointers. Flex encourages the use of first-class function
values, and shaky pointers were originally developed to decrease the load placed on
the memory allocation system by the heap allocation of function activation records.

Each function value includes a shaky pointer to an activation record which
could be used when it is next executed. This would have been left by a previous
execution of a return instruction, which verifies that no other references to the
activation record have been produced, which could have been exported to a wider
scope. The result is that repeated calls of a function will usually re-use the same
activation record, making function calls cheaper on average, and decreasing the rate
at which activation records are allocated, and hence the frequency with which the
garbage collector must be executed. When a garbage collection occurs all the
remembered activation records are reclaimed, since the chances are that many of
them are attached to functions that will not be called again for some time.

The most common use of weak pointers by normal programs, is to cache a
value whose recalculation is possible, but undesirable. Using a weak pointer a
reference to the value can be kept, but in the event of space becoming scarce, its
storage can be reclaimed by the garbage collector. There are many variations on
this, ranging from traditional caches, to memo functions.

However weak pointers have uses beyond the construction of caches. In the
Flex system, objects on the disk are represented by disk capabilities which are main
memory data structures containing all the information that is required to access the
value from the disk. It is important that two copies of a disk capability do not exist
in one main memory, so that a consistent view of the disk is maintained. Thus
when a disk capability is read from the disk, as a field of another disk object which
is being read, the system must check to see if another copy of this capability is
already in memory, in which case the existing copy should be used instead of the
new copy. Of course the disk subsystem cannot keep references to all the disk
capabilities that it has read, or these would never become unreachable, and so would
ev entually fill the whole of memory. Instead a weak pointer is kept to each disk
capability.

It would have been possible for the disk sub-system to have been written in a
way so that it was not necessary to keep disk capabilities unique, and so use weak
pointers. However Flex also provides remote capabilities which are capabilities to
functions and datastructures on other Flex computers, and the implementation of
these depends more crucially on the unique copies of remote capabilities in each
machine’s main memory, and hence on the use of weak pointers.96
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6 . 4  Forwarding Objects

The implementation of destroy methods uses forwarding objects which are
objects that resend all the messages that they receive to another object. Similar
objects have been proposed as a mechanism for providing distributed object-oriented
systems,97 where they were called Proxy objects. Here the forwarding of a message
could involve its transmission to another computer system, where the appropriate
method is to be executed. The forwarding mechanism can be arbitrarily complex,
and it is likely that only the final delivery will use the normal message send
mechanism. The result of executing the method is returned in some way to the
forwarding object, and thence back to the initiating object, unless the system allows
the sender of a message to also nominate the object to which the reply should be
sent, in which case it might be returned directly to the originating object.45 This
would be similar to passing the continuation in the message.

Forwarding objects are related to delegation which is the alternative to
inheritance used by actor-based languages, such as Act,45 and Acore.46 In a system
that uses delegation an object can nominate another object as its delegate, which
means that any message sent to the object, for which it does not have a method, is
sent to the delegate instead. This should be compared with the search through
behaviours defined by the class, and then the superclasses of an object receiving a
message, which implements the sharing of behaviours that is fundamental to
inheritance. The exact relationship between delegation and inheritance is explored
elsewhere,20, 21 but it appears that forwarding objects are objects in a system with
inheritance, which implement a less general form of delegation, where all messages
are delegated. A system which provides delegation can provide forwarding objects
trivially.

Forwarding objects might be provided as primitive constructions by an object-
oriented system, or can be programmed explicitly, in a ‘‘brute-force’’ manner by the
user. Smalltalk-80 also allows a more elegant approach. It is interesting to consider
the type of forwarding objects, and the implications this might have on appropriate
type systems for object oriented systems.

6 . 4 . 1  Forwarding Objects in Smalltalk-80

Smalltalk-80 allows the ‘‘brute-force’’ implementation of forwarding objects.
If a forwarding object is required to an object of class c, then we can define
another class, c’. This defines objects with a single instance variable to contain a
reference to the instance of c to which messages are to be forwarded. A method is
defined for each message understood by c, which simply returns the result of
sending the same message to the object in its instance variable.

There are several problems with this approach. Most objects in Smalltalk-80
systems respond to a large number of different messages, so that defining the
forwarding messages would be tedious, also care would have to be taken that the
addition or deletion of methods in the client were reflected in the definition of the
forwarding object. Both these problems would be decreased to some extent by
automating the production of the classes of forwarding objects.
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More fundamentally, it seems wrong that so many forwarding classes and
methods must be provided, which all do essentially the same thing. Obviously some
way of abstracting the forwarding behaviour is required, and we really wish to
define a class Forwarder which could provide forwarding objects for any objects
in the system.

This can be done in Smalltalk-80 since there is no static type checking, and
because the system exposes the underlying message send mechanism in a useful
way. The class Forwarder defines objects which only provide a behaviour for a
single message called doesNotUnderstand:, which is a special message which
can be generated by the Smalltalk virtual machine. When a message is sent to an
object the virtual machine looks for a method associated with that message in the
message table stored in the object’s class. If a method is not found the search is
repeated in the class’ superclass, and so on, up the superclass chain until a method
for the message is found. This search directly implements inheritance.

It is possible for a message not to be understood by any of the classes in this
chain, which is discovered if a search for the message fails in a class that does not
have a superclass (this will usually be the class Object, which is the root of the
inheritance hierarchy). When this happens the virtual machine creates an object
representing the failed message, together with its parameters, and sends the message
doesNotUnderstand: to the original receiving object, with this packaged up
message as the parameter. A method implementing doesNotUnderstand: is
then searched for, in just the same way as before. Usually the implementation in
class Object is found, which signals an error to the user, and allows the debugger
to be used to diagnose the failure. However two other possibilities can occur. Any
class can provide a new implementation for this message, so that object-specific
error behaviour can be provided. Alternatively the search may fail a second time,
which is detected as a fatal error by the virtual machine.

Forwarding objects can be constructed by creating objects that only have a
behaviour for the doesNotUnderstand: message. Any other message sent to
the object will fail to find a corresponding method, and so will be packaged up as a
message object and given as a parameter to a doesNotUnderstand: message.
The doesNotUnderstand: method simply invokes the message on its target
object using perform:, inherited by normal objects from class Object.

A problem remains with objects whose structure is known by the Smalltalk
virtual machine. This is the only point at which objects are not used in the object-
oriented way, by sending messages. Instead the virtual machine extracts fields
directly from parameter objects, which will of course fail if the object is a
forwarding object. It is not clear how, or if, the virtual machine might be
restructured to avoid this problem, without introducing large additional overheads,
but fortunately it is unusual to wish to forward messages to such objects, and so the
mechanism described can be used for most practical purposes.
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6 . 4 . 2  Forwarding Objects in Typed Languages

Both the approaches to defining forwarding objects in Smalltalk relied on
being able to treat an object as if it were an instance of the class of the object to
which it was forwarding messages. This is allowed in Smalltalk since checks of the
validity of messages are made when the messages are sent, at runtime. Many other
object-oriented languages, notably C++,27 Trellis/Owl,12 and Eiffel,14 are type-
checked at compile-time, and so the forwarding objects must be type-compatible
with the objects to which they are forwarding, if they are to be made invisible to
the rest of the system.

In these languages this means that the forwarding object’s class must be a
subclass of the object to which they are forwarding messages. This can be achieved
using the ‘‘brute-force’’ approach above, but unfortunately instance variables are
inherited by a subclass as well as all the messages of the superclass. Usually this is
necessary to allow inherited methods to continue to access their instance variables,
but here we are overriding all the inherited methods, and so the instance variables
are superfluous.

This is another example of classes where independent control of the types of
objects, and hence the sub-type relationships into which they partake, and their
implementation, possibly by inheritance, is necessary in order to create clean
definitions. We wish to define the forwarding object to have a sub-type of the
object to which it forwards messages, so that it can appear wherever the target
object could have appeared. But we do not want to implement it by inheriting the
implementation of the target object, since this behaviour has nothing to do with the
mechanisms of forwarding. Rather we would prefer to simply provide all the
methods that are needed. This problem was first discussed by Snyder,16 and the
forwarder could be constructed in this more direct way in his language,
CommonObjects.39

6 . 4 . 3  Primitive Support for Forwarding Objects

In languages which carry out the run-time resolution of messages to methods
by indexing into a message table, such as C++, it may be possible to have a single
implementation of the forwarding class, which can be shared by all forwarded
objects.

In C++ the first field of each object is a pointer to an array of pointers to the
functions that implement the methods for all the instances of its class. This array is
the message table associated with the class — also called a vtable in C++ literature.
When a message send is compiled, code is generated to call the nth function pointer
in the message table of the receiving object. The value of n is a constant calculated
by the compiler, from the message, and the type of the receiving object. This
allows subclasses to override inherited methods by pointing elements in their
message tables to their own definitions of methods. They can also provide methods
for extra messages, by extending the message table, but these messages cannot be
used in places where the object is being used as an instance of one of its
superclasses, since these messages are not defined by the superclass.
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It is possible for a forwarding object to be implemented by an object
containing the pointer to the target object, with its method table pointer referring to
a special forwarding message table. The aim is for this message table to be shared
by all forwarding objects in the system, the only constraint is that the table must
contain entries for every message that might be sent to a forwarded object, and so
must be at least as big as the biggest message table of a forwarded object.

The methods in this object table are identical, except that each knows its own
position in the table. When a message with offset n is sent to a forwarding object,
the forwarding method simply calls the nth method in the message table of its target
object.

Care must be taken to ensure that the method receives the correct parameters.
The nth forwarding method must be able to forward messages to any object that can
accept a message with offset n, many of which will probably require different
parameters. On most systems this can be achieved by the forwarding method
jumping to the target method, rather than calling it, without rearranging the
parameters. Thus the target method sees the parameters as they were arranged by
the caller. Note that this implies that the forwarding methods would probably have
to be written in assembler, since this cannot be expressed directly in C++.

In fact the forwarding method must change the value of self that will be seen
by the target method, this is passed by C++ as an extra parameter, but (at least in
the present AT&T C++ translator) its position is always the same, so it can be
altered by the forwarding method, without further knowledge of the message, or the
target object, being needed.

If it were known that an implementation always left the method table index —
n in the previous discussion — in a standard place after the call of a method, all the
forwarding methods could be the same. However this is not usually the case, since
there is no other reason for the index to be kept, and changing the C++ compiler to
do this would probably add a small additional cost to all message sends.

The problems with the inadequacy of the C++ type system for forwarding
objects can be overcome when all the objects involved are referenced by pointers,
since C++ allows arbitrary conversions using casts. A forwarding object to an
instance of class c can be created, and then a pointer to it cast to be a pointer to an
instance of c. Thus the forwarding object can be hidden as far as the rest of the
system is concerned. This would not be possible in languages that do not allow
such freedom with conversions, where the brute-force approach would probably be
needed, at least for the definition of the type of the forwarding object.

It should be noted that these techniques for forwarding objects only work for
purely-object oriented classes. Classes that expose any part of their instances’
implementation to external access cannot be forwarded. Such exposure might be
through visible instance variables, or in C++ the use of non-virtual member
functions — that is messages whose resolution does not go through the message
table, but is carried out statically, at compile time.
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6 . 4 . 4  Alternatives to Forwarding Objects

We hav e seen that forwarding objects can be provided in many object oriented
languages, but their implementation is often rather unsatisfactory, requiring support
from the language, or non-trivial effort from the programmer. There are also some
unresolved issues about the semantics of forwarding objects — in particular the
meaning of object-equality must be re-examined.

In this situation it is appropriate to ask if the full power of forwarding objects
is required for the implementation of destroy methods. For many OWDMs we do
not need the whole object to survive its deallocation, and be valid when the destroy
method executes, rather this was required so that the destroy method could execute
in the context of a consistent object. However in practice usually only a small part
of the state of an OWDM is needed for the execution of the destroy method, and
thus this is the only state that need be kept in the OWDM.

Recognition of this leads us to a different allocation of the behaviour between
the objects. What was previously the forwarding object now contains most of the
state, and defines most of the methods. This will be called the primary object,
since it is also the object to which the rest of the system has references. The other
object, now called the secondary object, contains only the information that is needed
for the execution of the destroy method. It defines the destroy method, and service
methods to be used by the primary object. As before the destroy list keeps a weak
pointer to the primary object, and a normal pointer to the secondary object.

The methods in the primary object fall into three categories. First those that
can be entirely implemented with the state in the primary object. Next are those
that can carry out most of their behaviour locally, but may need to use simple
behaviours from the secondary object, either to access or update its state. Finally
there are the methods that are easier to implement entirely in the secondary object,
and so the corresponding messages must be forwarded by the primary object. In
effect the previous approach put all methods into this third category. By splitting
the behaviour in this way we have reduced the number of messages that need to be
forwarded, so that the ‘brute force’ approach can be used much more easily.

Carrying this to its ultimate conclusion we can see that objects should be
designed from the start with the execution of destroy methods in mind. If the
overhead of the primary object keeping values in the secondary object is thought to
be too great, then copies of those values could be kept in both objects, and it only
becomes necessary for the secondary object’s value to be kept up to date. A library
could still be provided which uses weak pointers to determine when the primary
object becomes unreachable, and send the destroy method to the secondary object.
There is no longer any worry that the secondary object might not be consistent,
since it is an independent object. Of course the secondary object must not contain a
reference to the primary object as this would stop it from ever becoming
unreachable, and so the weak pointer to it would never be cleared.

This approach solves many of the problems seen in the last section with the
implementation of forwarding objects, since we no longer require a large number of
messages to be forwarded. Also it will be easier to ensure that references to the
internal object are not accidentally exported, since these will not have a generally
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useful behaviour and so it will be less likely that it could be used by accident. The
disadvantage is that it is more difficult to add a destroy method to an existing class,
and that the programmer must be more aware of the details — however these details
are probably easier for the programmer to understand.

6 . 5  Conclusions

Several improvements in previous techniques for the definition and
implementation of destroy methods have been proposed. In particular weak pointers
provide the mechanism by which the reachability of objects is determined. Since
weak pointers have a well defined behaviour, can be provided for a variety of
garbage collection algorithms, and are more general than destroy methods, a strong
case can be made for their inclusion in any system with garbage collection.

Forwarding objects are, in contrast, less well understood constructs, but where
they are available, they can be used with weak pointers to provide destroy methods.
However re-structuring objects that require active deallocation can achieve the
desired effect without requiring full-blown forwarding objects, and it is expected that
this approach would be preferable in most systems.

Some other system support is also preferable, in particular multi-tasking allows
destroy methods to be executed in the background, rather than increasing the time
for garbage collection. Notification of the occurrence of a garbage collection can
help in the scheduling of this background process. Again these are features that
would be desirable in most systems for more general use.

Semantic problems, such as the correct order of destruction of collections of
OWDMs including cycles, remain. In the systems described such structures will
never be deallocated, much as was seen previously with reference-counting, however
the ‘solution’ to this given in the modifications for mark-scan garbage collection
was at best ad hoc, and so its loss is not seen as a problem. On balance it is
probably best to force the programmer to explicitly consider this difficult situation,
and decide on the appropriate mechanism to resolve it. This is much easier now
that destroy methods are not primitives of the system.

It is particularly interesting that choosing the correct level of abstraction, has
led to a much simpler implementation of destroy methods, while also introducing
primitives that are more generally useful. This is not surprising since there is no
substitute for ‘‘getting it right’’,103 but getting it right first time is not always easy!
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Chapter 7

Conclusions and Further Work

This thesis has examined some aspects of the support required for object-
oriented systems, mostly in the context of statically strongly-typed systems. The
emphasis has been on primitives that allow the appropriate support to be
constructed, rather than providing the support directly.

The advantages of this approach are that a single system can support a range
of different views of objects, without requiring special support for each view. Thus
the result is more flexible, and gives the programmer more scope to choose
techniques that are thought to be appropriate in any particular situation. It also
means that fewer primitive operations need be provided by the system, and these are
usually simpler than the operations for direct support would have been. This makes
the basic system easier to implement, debug, and possibly prove correct, which in
turn means that higher-level operations can be built on a more trustworthy base.

A possible disadvantage for strongly-typed systems is that simpler type-
systems often do not allow primitives to be composed in the ways that are needed.
This implies that more powerful type systems should be used, and this certainly has
a generally beneficial effect on the utility of a system, but can limit the use of the
techniques in existing systems.

7 . 1  The Introduction

The introduction described the concepts of object-oriented systems, giving a
definition of ‘‘object-oriented’’ that is based on the properties of objects, rather than
the way in which they are constructed. Consequently this can be used to
characterize many systems that are claimed in the literature as supporting an
‘‘object-oriented’’ approach, such as object-oriented operating systems, but are not
included in other definitions. Some of the more important, and influential object-
oriented systems were then described.

Modern type systems were then briefly described, along with the basis for the
types of objects, that is commonly used in strongly-typed object-oriented languages.
Problems with a type system based on the construction of objects’ classes were
outlined.

Finally the common implementation techniques for objects, using both
dynamic and static method dispatch techniques were described.
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7 . 2  Implementing Objects

First-class functions

Chapter 2 first showed how simple objects can be implemented in strongly-
typed systems with first-class functions. It then introduced the technique of type-
coercion, and showed how this can be used to allow the substitution property of
objects, specifically when objects and classes are implemented using inheritance.
The technique can be extended trivially to implement multiple inheritance.

An extension to normal inheritance, which was called downwards type-
coercion, was also discussed as a solution to problems caused by objects being
created by libraries.

Closures are used to provide the encapsulation and type-compatibility of
objects. Unfortunately objects constructed in this way are very inefficient,
particularly in terms of space, because a closure is needed for each method an
object provides. The data-structures needed for type-coercion can also be rather
large, and the type-coercion operations themselves introduce a run-time overhead.

Subtype relationships

Chapter 3 described subtype rules, and showed how these can be used in the
construction of objects. Given that subtype rules were proposed specifically to
describe objects and inheritance, it is disappointing that objects constructed in this
way are still relatively space-inefficient. The principle cause of this inefficiency is
the contra-variance of function parameter types, which does not allow objects to be
constructed in the ‘‘natural’’ way, but forces the use of non-local storage for
instance variables.

Subtype relationships are even less helpful in allowing efficient
implementations of multiple inheritance, since the general subtype relationship for
structures introduces a substantial overhead to the operations that access members,
and does not adequately address problems caused by conflicting inheritances of
names.

Existential types

Chapter 4 showed how the existential quantification of types, together with a
new subtype rule for existential types, solves the problems caused by function
parameter-type contra-variance, and allows objects to be constructed with a similar
overhead to those in C++, entirely within a strongly-typed environment. Here both
the space requirements of objects, and the time complexity of message dispatch are
similar. The use of a combination of these techniques with type-coercion to
efficiently implement multiple inheritance is also outlined.
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7 . 3  Active Deallocation

Direct support

Chapter 5 introduced the concept of ‘‘active deallocation’’. It described how
this might be used, and how some current systems address these requirements. Tw o
‘‘direct’’ implementations of destroy methods were then given, for systems using
reference-count, and mark-scan garbage collection algorithms. While the former is
simple, adding destroy methods to mark-scan garbage collection is extremely
complex.

Unfortunately neither garbage collection algorithm is used extensively in
modern systems, and there are several other problems. At the system level, many
details of the garbage collection algorithm can become visible to the programmer
through the behaviour of destroy methods. More fundamentally there are problems
caused by the fact that destroy methods are called during garbage collection,
asynchronously with the execution of the rest of the system. Consequently, at least
for new systems, these algorithms are superseded by those described next.

Primitive support

Chapter 6 shows how much more satisfactory implementations of active
deallocation can be achieved by the programmer, giv en some basic support in the
form of weak pointers, by the system. Forwarding objects and garbage collection
notification are also convenient for this, but it is seen that these are not essential.

Weak pointers are both simpler to implement, and more widely useful than
destroy methods. This strongly suggests that systems should provide them in
preference to destroy methods, which could then be implemented by a library. This
organisation also allows the programmer to structure objects so that forwarding
objects are not required for active deallocation. This makes the design decisions
that are required more obvious, and is likely to be more efficient.
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7 . 4  Comments and Further work

The provision of objects, using first-class functions, has been common where
object-oriented extensions have been made to LISP. It is described particularly
clearly by Abelson and Sussman.42 The advantages of static type checking made it
attractive to attempt this in strongly-typed languages, however it is seen that even
the relatively powerful type system of Standard ML is not flexible enough to allow
efficient objects to be constructed. The addition of subtype rules to the type system
helps a little, but it was only with the further addition of existential quantification
over types that techniques with acceptable efficiency are found.

While these techniques cannot solve the problems inherent in multiple
inheritance they do allow various implementations. It is particularly useful here that
the programmer has more control over the form of multiple inheritance
implemented, since there are more choices here than with other primitives in object-
oriented programming, and less agreement on which solutions are the ‘‘correct’’
ones for different applications.

Unfortunately, few current systems have a type system as expressive as this
requires. One that is powerful enough is Ten15,64 and it was this system that
stimulated some of the ideas presented here. It is intended to use these techniques
as one starting-point for a project investigating the support for objects in Ten15,
when a suitable implementation of Ten15 becomes available.

Ten15 also provides mechanisms that allow a message dispatch mechanism
more like that in Smalltalk-80, while retaining static type checking elsewhere. It
will be interesting to compare these techniques, to gain a better understanding of the
situations in which each are appropriate. There will also be opportunities to
investigate further the various techniques for providing multiple inheritance that have
been described.

The first part of the thesis concentrated on allowing inheritance — it would be
interesting to look at similar ways of providing support for delegation. It might be
hoped that this would ultimately provide a way in which a system might allow
inheritance and delegation to co-exist, so that each might be used where it is more
appropriate. Some work along these lines has already been done by the author,
when support for inheritance was added to AML/X,104 but this work differed in
several respects, and further investigation is needed.

Support for other features of systems should also be investigated. Techniques
allowing the efficient execution of operations that require simultaneous access to
several objects are needed. This is particularly important in the implementation of
operations like matrix multiply. C++ allows a method to access the representation
of all the instances of its class, in addition to that of self. It also allows a class to
define other classes as friend classes, which can then access the representation of its
instances. The schemes presented here give a much stricter view of encapsulation,
which is usually desirable, but is over-restrictive in cases such as these. This
tension between encapsulation and efficiency remains an open issue in the design of
object-oriented systems, but here again it is hoped that constructing objects using
primitives allows the programmer more flexibility.
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Similarly when existential quantification is used, information about the exact
type of an object is lost forever. This is usually appropriate for the implementation
of an object-oriented language, but might be too severe, for example if the objects
are persistent. The long lifetimes of persistent objects implies that mechanisms
might be needed to allow objects to evolve, so that they can use new behaviours
that have been added to their class. The general problem of what happens to
persistent objects when their definitions are changed is very much a topic for current
and future work.

Recent work by Canning, Cook et al.105 introduces a more expressive form of
bounded universal quantification, which they call F-bounded quantification. Like
the use of existential types here, F-bounded quantification allows the construction of
the recursive types with subtype relationships that are needed for objects, but it does
not require the representation to be hidden. The combined use of F-bounded and
existential types is still to be explored, but there is every reason to believe that the
synthesis would be beneficial.

The active deallocation of objects is an extremely useful technique in some
parts of a system, particularly those providing low-level access to the machine.
However interactions with the normal execution of a system must be considered
very carefully, and here it is particularly useful that special-purpose primitives are
not used, since their interactions with other parts of the system (for example,
tasking) would probably be complex and inconvenient.

A general theme has been that the provision of appropriate, and general,
primitives is preferable to specific support. It provides the programmer with a more
flexible system, less committed to a particular view of how things should be done.
For the implementation of objects, first-class functions are sufficient active support,
however a sophisticated type system is needed before the approach is viable in
terms of cost. Similarly, weak pointers are all that are needed to get the effects of
the active deallocation of objects, but some other support can be helpful.

Partly the aim has been to discover what it is that must truly be primitive in
systems. In retrospect it seems obvious that one answer to this is that the more
expressive the type system is, the fewer primitives are needed. Again this is a
question of interest to Ten15, since it is intended to support a range of languages by
providing sufficiently flexible primitives, rather than providing the union of all the
primitives of the supported languages. At the linguistic level, syntactic issues have
been largely ignored, however in practice it is important that baroque syntaxes do
not make this approach impractical.

A long-term aim would be to collect a library of techniques such as these —
unfortunately they are often less than obvious — which programmers could use
when they are faced with similar problems. This is similar in spirit to the concept
of using ‘‘little languages’’106 to solve problems, rather than attempting everything
in a general-purpose language. However here we are saying that it is the system
language itself that should be tailorable to a variety of approaches. Again this
concept is more common in the LISP community, but it is hoped that it has been
demonstrated that this is now also viable in strongly-typed systems.
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